
Unconstrained Structure Formation in
Coarse-Grained Protein Simulations

Tristan Bereau
April 2011

Department of Physics

Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Thesis committee:

Markus Deserno, Chair

Maria Kurnikova

Mathias Lösche
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Abstract

The ability of proteins to fold into well-defined structures forms the basis of a wide variety
of biochemical functions in and out of the cell membrane. Many of these processes, however,
operate at time- and length-scales that are currently unattainable by all-atom computer
simulations. To cope with this difficulty, increasingly more accurate and sophisticated
coarse-grained models are currently being developed.

In the present thesis, we introduce a solvent-free coarse-grained model for proteins.
Proteins are modeled by four beads per amino acid, providing enough backbone resolution
to allow for accurate sampling of local conformations. It relies on simple interactions that
emphasize structure, such as hydrogen bonds and hydrophobicity. Realistic α/β content
is achieved by including an effective nearest-neighbor dipolar interaction. Parameters are
tuned to reproduce both local conformations and tertiary structures. By studying both
helical and extended conformations we make sure the force field is not biased towards
any particular secondary structure. Without any further adjustments or bias a realistic
oligopeptide aggregation scenario is observed.

The model is subsequently applied to various biophysical problems: (i) kinetics of folding
of two model peptides, (ii) large-scale amyloid-β oligomerization, and (iii) protein folding
cooperativity. The last topic—defined by the nature of the finite-size thermodynamic
transition exhibited upon folding—was investigated from a microcanonical perspective: the
accurate evaluation of the density of states can unambiguously characterize the nature of
the transition, unlike its corresponding canonical analysis. Extending the results of lattice
simulations and theoretical models, we find that it is the interplay between secondary
structure and the loss of non-native tertiary contacts which determines the nature of the
transition.

Finally, we combine the peptide model with a high-resolution, solvent-free, lipid model.
The lipid force field was systematically tuned to reproduce the structural and mechanical
properties of phosphatidylcholine bilayers. The two models were cross-parametrized against
atomistic potential of mean force curves for the insertion of single amino acid side chains
into a bilayer. Coarse-grained transmembrane protein simulations were then compared
with experiments and atomistic simulations to validate the force field. The transferability
of the two models across amino acid sequences and lipid species permits the investigation
of a wide variety of scenarios, while the absence of explicit solvent allows for studies of
large-scale phenomena.
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at the Forschungszentrum Jülich, Germany. I have had the chance to collaborate with
Michael and learned a great deal from his experience on finite-size thermodynamics. His
expertise, patience, and devotion to research have been a valuable example to me. I thank
him and his group for welcoming me to Jülich twice.
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1 Background and Motivation

1.1 Proteins

Proteins and peptides are polymeric organic compounds made of amino acids, which con-
stitute one of the four major building blocks of molecular biology.1 They are evolutionarily
optimized heteropolymers, whose physical and material properties more often than not ex-
ceed what can be readily understood from conventional polymer physics reasoning, which
derives much of its strength from uniformity, randomness, and the law of large numbers. In
contrast, the complexity of proteins rests on the different physical and chemical properties
of their monomers, the twenty physiological amino acids, and their intricate combination
into what at cursory inspection only seems to be a random heteropolymer sequence. More-
over, the main interactions that drive their folding into intricate secondary, tertiary and
quaternary functional structures are weak, comparable to thermal energy. The overall sta-
bility of a protein is perilously marginal [Pac90, PSMG96], so proteins very often rely on
cooperative effects to keep them in their native structure—one appealing reason for why
they might be so much bigger than what their comparatively small active centers would
make one suspect [SHHB09]. Their ability to fold provides a basis for the many biochemical
functions they provide within organisms, e.g., catalysis, cell signaling, immune responses,
motors, channels, structural and mechanical building blocks [GG08, Cre92, Fer98, BTS10].

1.1.1 Amino acids

Proteins are linear polymers built from amino acids. The generic chemical structure of all
amino acids is characterized by a central (so-called α-)carbon which is connected to an
amino group, a carboxyl group, a side chain, and one more hydrogen.2 The asymmetry
of the α-carbon atom results in chiral molecules, which feature a non-superposable mirror
image. These two optical isomers are denoted l- and d-. Only the side chain varies between
different residues. Table 1.1 and Table 1.2 provide the name, structure, and certain chem-
ical characteristics of the twenty standard (naturally occurring) amino acids [Hay10]. This
collection provides a wide library of possible primary structures, i.e., amino acid sequences.
The chemical properties involved are key to understand the large-scale characteristics of
proteins.

1The other three being lipids, nucleic acids, and polysaccharides.
2The amino and carboxyl groups become amide and carbonyl, respectively, once a peptide bond forms

between two amino acids through a condensation reaction.
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Alanine Valine Leucine Isoleucine Proline

Ala (A) Val (V) Leu (L) Ile (I) Pro (P)

Structure

O

NH

O

NH

O

NH
O

NH

O

N

Type hydrophobic hydrophobic hydrophobic hydrophobic hydrophobic

Side-chain pKa – – – – –

Methionine Phenylalanine Tryptophan Glycine Serine

Met (M) Phe (F) Trp (W) Gly (G) Ser (S)

Structure

O

NH

S

O

NH

O

NH

NH

O

NH

H

O

NH

OH

Type hydrophobic hydrophobic hydrophobic hydrophilic hydrophilic

Side-chain pKa – – – – –

Table 1.1: Amino acid names, structures, and chemical characteristics (part 1/2). Squiggly lines represent the peptide
bonds connecting neighboring amino acids.
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Threonine Cysteine Asparagine Glutamine Tyrosine

Thr (T) Cys (C) Asn (N) Gln (Q) Tyr (Y)

Structure

O

NH

OH

O

NH

SH

O

NH

NH2

O

O

NH

NH2O

O

NH

OH

Type hydrophilic hydrophilic hydrophilic hydrophilic hydrophilic

Side-chain pKa – 8.1 – – 10.1

Aspartic acid Glutamic acid Lysine Arginine Histidine

Asp (D) Glu (E) Lys (K) Arg (R) His (H)

Structure

O

NH

OH

O

O

NH

OHO

O

NH

NH2

O

NH

NH NH2

NH

O

NH

NH

N

Type acidic acidic basic basic basic

Side-chain pKa 3.7 4.1 10.7 12.1 6.0

Table 1.2: Amino acid names, structures, and chemical characteristics (part 2/2). Squiggly lines represent the peptide
bonds connecting neighboring amino acids. Note that the neutral form of histidine exists in two forms
because the hydrogen atom shown on the imidazole ring can be located on either of the two nitrogen atoms.

3



1 Background and Motivation

The interactions taking place between amino acids arise mainly from electrostatics:

Covalent bond (∼ 100 kBT ) chemical bond due to the sharing of pairs of electrons between
atoms.

Salt bridge (∼ 10 kBT ) attraction between two oppositely charged residues.

Coulomb (∼ 1 − 10 kBT ) interaction between charged atoms; the presence of the sur-
rounding solvent involves large gradients in the dielectric constant ǫ (≈ 80 in water
compared to ≈ 5 in the protein interior), such that the strength of the interaction
varies greatly.

Hydrogen bond (3 − 10 kBT ) attractive, highly-directional, non-bonded interaction be-
tween a polar hydrogen atom (“donor”) and an electronegative atom (e.g., nitrogen,
oxygen) with a nonbonding orbital (“acceptor”); the hydrogen atom must be co-
valently bonded to another electronegative atom to leave it with a partial positive
charge [Mar07].

van der Waals (. 1 kBT ) the van der Waals interactions between atoms describe an at-
traction due to (i) fluctuating multipoles (including neutral atoms), i.e., London
dispersion, and (ii) permanent-multipole–induced-multipole forces, i.e., Debye in-
duction.

Hydrophobic effect (. 1 kBT ) entropic driving force for self-association of non-polar
groups in water; the hydrophobic effect describes the loss of water entropy due to a
hydrophobic group which enforces constraints on the hydrogen-bond network in its
vicinity [Tan80].

Apart from covalent bonds, all interactions are weak (i.e., comparable to thermal energy
at room temperature). Thus (i) thermal fluctuations will have a predominant role in
the structures of proteins, (ii) the conformations adopted by polypeptides tend to be
marginally stable, and (iii) entropic effects will largely dominate, associating proteins to
the class of soft-matter systems.

The chemical structure of each amino acid is shown in Table 1.1 and Table 1.2. Four
main amino acid types can be distinguished: hydrophobic, hydrophilic, acidic, and basic.
The first two refer to non-polar and polar side chains, respectively, a distinction which
impacts their (self-)association in water. Acidic and basic amino acids may be negatively
or positively charged, respectively, depending on their pKa (i.e., logarithmic measure of the
chemical equilibrium between an acid and its conjugate base) and the surrounding pH (i.e.,
logarithmic measure of the hydrogen ion activity in a solution). Given the side-chain pKa

of each amino acid in Table 1.1 and Table 1.2, a solution at neutral pH (≈ 7) will contain
negatively charged Asp and Glu, positively charged Lys and Arg, while the protonation of
His will depend sensitively on the pH (because pH and pKa have similar values) [GG08].
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1.1 Proteins

1.1.2 Folding and thermodynamics

Most proteins can only perform their biochemical function while in their native—folded—
state.3 For instance, the establishment and control of a voltage gradient across the cell
membrane requires ion channels and pumps to properly assemble across the bilayer. The
ability of proteins to reliably stabilize a given structure out of many possible conformations
is a remarkable feature that distinguish them from most polymers. This property stems
from the heterogeneity and chemical variety of amino acids: some interactions will be
favored over others, and this bias creates the ensemble of stable conformations. Moreover,
the pioneering work of Anfinsen showed that, provided suitable environmental conditions
(e.g., temperature and pH) hold, an unfolded protein will spontaneously fold into its native
structure [Anf72].4 This suggests that protein folding, in its simplest form, is a self-
assembly process and that the thermodynamics of the system is contained within the amino
acid sequence of the chain. For recent reviews on protein folding, see [BVP11, DOW+07].

The existence of a unique native structure (including its thermal fluctuations) implies
that no other state exhibits a lower free energy. Hence, the resulting “free energy land-
scape” of a protein exhibits a single global minimum.

In order to cope with small changes in the surrounding environment, the free energy
minimum must be stable. Stability is quantified by the difference between the free energy
of the native structure and the free energy of the next lowest metastable state(s). Lat-
tice simulations showed that the most stable single-ground-state heteropolymer sequences
exhibit a funnel-like energy landscape, in which large variations in energy and entropy
compete and result in small free energies of only ≈ 1− 10 kBT [BOSW95, OW04]. Indeed,
the energetics involved in folding an extended chain into its native conformation require,
among other things, the formation of many hydrogen bonds and hydrophobic contacts—
leading to a large gain in energy and a strong loss of entropy (see Figure 1.1). A steep
energy surface around the native state optimizes thermodynamic stability.

Another consequence of the funnel-like energy landscape theory is kinetic accessibility
between the native state and any unfolded conformation. This resolves Levinthal’s paradox
[Lev69], which argues that sequentially sampling all possible protein conformations in order
to attain the correct folded state would require astronomically long folding times.5 The
study of kinetic pathways, which describes how proteins fold in time, has lately been
the subject of intense research and has greatly benefited from computer simulations (e.g.,
[Caf06, VBBP10]).

3A state, as defined in statistical physics, is a probability density in phase space. It does not map
to a single conformation, which would have no statistical weight. Instead, it is really understood as an
ensemble.

4However, more complex proteins may require chaperones in order to fold [Fin99].
5One wonders, though, whether this can really be considered a paradox. The very idea of a sequential

search through all possible conformations seems to negate fundamental concepts from thermodynamics
and statistical mechanics.
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1 Background and Motivation

Figure 1.1: Cartoon of the folding energy landscape is shown in (b). This illustrates the
competition between few low-energy, low-entropy folds (bottom; folded) with a
large number of high-energy, high-entropy conformations (top; unfolded). The
ruggedness of the landscape suggests the existence of kinetic traps. On the
left (a), the corresponding free energy as a function of a valid order parameter
(i.e., one that can describe the evolution of the system) shows two minima:
one at high energy, high entropy (unfolded) and the other at low energy, low
entropy (folded). Reprinted from Current Opinion in Structural Biology, 14,
J. N. Onuchic and P. G. Wolynes, Theory of protein folding, 70–75 [OW04],
Copyright (2004), with permission from Elsevier.

1.2 Computer simulations

The use of computer simulations to predict and understand the behavior of proteins (as
well as many other physical systems, ranging from quarks to the universe) is an evergrowing
field. They provide a highly resolved picture that is complementary both to experimental
measurements and theoretical (i.e., analytical) calculations. By defining interaction poten-
tials between neighboring atoms (i.e., bonded interactions) and atom pairs (i.e., nonbonded
interactions), one can sample a time or ensemble average of a system by means of molec-
ular dynamics or Monte Carlo simulations, respectively.6 While Monte Carlo simulations
sample states by selecting random configurations according to a predefined distribution
function (e.g., the Boltzmann distribution for canonical sampling), molecular dynamics
numerically integrates the (classical) equations of motion of the system, usually subject to
extra noise and friction terms (called “thermostats”) which create the ensemble of interest
(e.g., [AT93, FS01]).

6For more details on the equivalence between time and ensemble averages, see the introduction of
Appendix A.
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1.2 Computer simulations

1.2.1 Analysis

The collection of conformations sampled from a simulation are then analyzed in order to an-
swer a specific question, compare data with experiment, or gain insight into a system. The
overwhelming amount of information contained in the 3N microscopic degrees of freedom
of a N -particle system calls for appropriate, low-dimensional observables that characterize
the macroscopic state of system. These observables are evaluated at suitably chosen time
intervals during the simulation for subsequent analysis. Such analysis is often straightfor-
ward: in a canonical simulation,7 for instance, the canonical average of any observable O
can simply be obtained from the arithmetic mean of all (hopefully equilibrated) data points
Oi (see subsection A.1.1 on page 117). For example, the total energy of a system, E, can
be recorded at any time during the simulation. The histogram of equilibrated values will
converge towards the probability distribution function p(E) ∝ Ω(E) exp (−E/kBT ), where
Ω(E) is the density of states.

Such histograms readily provide the means to characterize the stability of a structure
through the evaluation of free energies.8 Projected along an observable O, the free energy
F (O) describes the stability of the system as a function of this observable. Canonically,
this is expressed as

F (O) = −kBT ln

(
p(O)

pmax

)
, (1.1)

at a temperature T and using an arbitrary reference probability pmax. By definition, it
is impossible to evaluate an “instantaneous” free energy Fi(Oi) at any given time i in
the simulation, because the free energy is an ensemble property. Practically, calculating
Equation 1.1 requires a bit more sophistication, because exhaustively sampling p(O) by
brute force counting in a canonical simulation fails for all but very small systems. Smarter
techniques to calculate free energies are presented in Appendix A and used throughout the
present thesis.

1.2.2 Atomistic simulations

Atomistic simulations follow the motion of every single atom and describe interactions be-
tween them using a classical force field. One of the earliest attempts to study atomistically
the time-evolution of proteins from molecular dynamics was presented by McCammon,
Gelin, and Karplus [MGK77]. They presented a 9 ps-long simulation of the bovine pancre-
atic trypsin inhibitor protein in vacuo at an all-atom resolution. This study is illustrative
in a number of ways:

• While (breathtakingly) short, the simulation nevertheless showed the predominance

7i.e., a simulation in which suitable thermostats ensure that the time average of the simulated trajectory
coincides with the canonical state.

8Recall that in a soft-matter system, the most stable configuration is given by the minimum in the free

energy, rather than the energy.
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1 Background and Motivation

time [s]
10−15 10−12 10−9 10−6 10−3 100

bond
bondvibration

hydrogen side-chain
motion

α-helix
β-hairpin

typical
folders

Figure 1.2: Several timescales involved in protein folding.

of fluctuations and contributed in dismantling the old belief that proteins are static
bricks of matter.

• The time-averaged structure deviates from the X-ray configuration. While expected
(the structure in the crystal is constrained; the simulation is run in vacuo), it is
not clear how much of the difference is simply due to force-field inaccuracies. The
impact of such systematic errors on the resulting structures is often difficult to probe.
In more than three decades, atomistic force-fields have become substantially more
accurate, and yet they can still show secondary structure bias in small protein folding
simulations [FPRS09].

• The time-scales involved in protein simulations span many orders of magnitude, rang-
ing between bond vibration (∼ 10 fs) and protein folding (from µs to more than a
second), as shown in Figure 1.2. From a simulation point of view, the proper integra-
tion of the equations of motion requires a time step that is roughly 10 times smaller
than the fastest degree of freedom in the system (in the range 1− 2 fs for atomistic
resolution). The computational power available thus limits the accessible timescale.
As shown in Figure 1.2, the simulation time of McCammon et al. is about 10 orders of
magnitude away from the folding time of a typical protein. Nowadays, technological
advancements allow for simulations of small proteins (i.e., 10− 50 residues) in the µs
timescale (e.g., [MC07, FPRS09, VBBP10]). Simulations on specific hardware have
recently reached 1 millisecond [SMLL+10].

While corresponding quantum simulations would yield much more accurate results, their
use is severely limited to very small systems (i.e., ∼ 10 − 100 atoms) because of obvious
computational limitations. Their use in biomolecular simulations is thus restricted to the
study of active sites or localized chemical reactions.

1.2.3 Coarse-graining

As mentioned above, the advancement of protein simulations is strongly limited by force-
field development and computational power. While the invention of sophisticated sim-
ulation methods (e.g., generalized-ensemble techniques, distributed computing, specific
hardware architecture) has helped investigating problems which arise at longer time- and
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1.2 Computer simulations

length-scales, the difficulty in attaining thermodynamic equilibrium has called for alterna-
tive techniques. One of them is called coarse-graining.

Coarse-graining relies on the concept of separation of length- and time-scales in physical
systems. Figure 1.2 illustrates the correlation between timescales and typical processes
involved in protein folding, i.e., larger processes happen over longer times. These longer
timescale movements depend, to a large extent, on the average behavior of the faster
ones—rather than their detailed dynamics. By lowering the level of resolution, coarse-
grained (CG) simulations average over fast degrees of freedom to focus on larger (time-
and length-) scales [Toz05, Vot08].

Computationally, coarse-graining offers enticing features: a smaller number of quasi-
atoms—or beads—decreases the computational requirements and thus accelerates the speed
of Monte Carlo or molecular dynamics simulations. In addition, the coarse-grained poten-
tials tend to be softer than their atomistic counterparts so that larger integration time steps
can be used. Coarse-graining also smoothens out the free energy landscape by reducing
molecular friction, which artificially accelerates the dynamics even more and makes phase
space both smaller and more navigable.

Yet, the development of a new coarse-grained model is not without effort, as it re-
quires proper mapping (between atoms and CG beads), parametrization (i.e., potentials
of interaction), and testing for legitimate validation. Similar to atomistic force-fields, the
interaction potentials are tuned to reproduce data from higher resolution simulations (e.g.,
atomistic) and/or experimental measurements. Several important caveats associated with
coarse-graining are essential to keep in mind:

• Some systems (such as proteins) may heavily depend on small local interactions to
stabilize a given conformation, which makes the process of “throwing away detail”
so much more challenging.

• While there exist different systematic coarse-graining procedures (e.g., Iterative Boltz-
mann Inversion, Inverse Monte Carlo, Force Matching; see [RJL+09]) which optimize
interaction potentials to best reproduce a reference system (e.g., pair correlation
functions, average forces), there is no sure-fire way of producing a reliable and robust
model. Top-down parametrizations offer an alternative approach to coarse-graining,
including physics and knowledge-based models, where meso/macroscopic information
of the system is used to construct a simplified model. For instance, the peptide model
presented in the present thesis was not derived from a systematic parametrization
mainly due to the large body of residue-residue pair interactions (20×20 residues: 210
interactions),9 but rather constructed as a physics/knowledge based model. While
interactions in physics-based models are constructed using physical arguments (e.g.,
“beads should include excluded volume”), knowledge-based potentials are derived
from a statistical analysis of protein structures in the Protein Data Bank [WWWa].

9Pairwise residue potentials were recently derived from atomistic simulations for the 210 pairs of amino
acids by Betancourt and Omovie [BO09].
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1 Background and Motivation

• Gauging the applicability, strengths, and shortcomings of a coarse-grained model is
key to avoid misusing and misinterpreting results predicted from it.

The construction of a coarse-grained model also requires agreeing on a set of units with
which dimensional physical quantities can be measured. In the absence of electrostatics,
all units can be constructed from the explicit definition of length L, energy E , and mass
M. It is necessary to map these fundamental units to “real” (e.g., SI10) units in order to
relate the coarse-grained simulations to atomistic or experimental data. Note that when
studying thermodynamic (“static”) properties, masses drop out of any measurable quantity
(see Technical Point 1.1 for a derivation)—the proper calibration of bead masses is, in this
context, irrelevant. It is only in the dynamics that masses have a significant effect (e.g.,
the heavier the bead, the larger its inertia). This naturally raises the question: “Why
not reproduce the dynamics as well?” Because matching static properties alone provides
no constraint on the dynamics. The model displays some coarse-grained dynamics, as
quantified by the unit of time τ = L

√
M/E , but this unit does not provide a correct

measure for the long time dynamics of the real system; it only describes the “instantaneous”
dynamics of the coarse-grained system. For instance, it implies velocities vi that lead to
kinetic energies which satisfy the equipartition theorem

1

2
mi〈v2

i 〉 =
3

2
kBT. (1.2)

The main reason why the dynamics are not automatically recovered is because the reduction
of molecular friction—fewer beads give rise to a smoother energy landscape—accelerates
the true dynamics. In fact, this is generally seen as a good thing, because it enables more
efficient sampling. One thus refers to how much faster the coarse-grained model is by means
of a speed-up factor. An attempt to calculate this quantity for the model introduced in the
present thesis is presented in chapter 3.

Overall, the field of coarse-graining has greatly evolved and become increasingly sophisti-
cated, such that it is now recognized as a complementary tool to experiments and atomistic
simulations in various fields (e.g., the MARTINI force field in the context of transmem-
brane protein simulations [MRY+07, MKP+08]). Apart from computational speedup, one
of the appealing features of coarse-graining is the amount of insight that can be gained:11

one hopes that the main structural mechanisms involved in a complex system, such as a
protein, need not be described by all of its degrees of freedom but rather a small sub-
set. Coarse-graining consists of judiciously identifying the important degrees of freedom
to better understand the problem at hand.

In this respect, the coarse-grained peptide model presented in the next chapter is an
attempt to produce a generic (i.e., transferrable) model that includes enough biochemical

10The Système International d’unités [WWWb] is the modern form of the metric system. It relies on
the following units: metre, kilogram, second, ampere, kelvin, candela, and mole. While overwhelmingly
used in the commerce and scientific communities throughout the world, certain countries still resist its
invasion.

11“The purpose of computing is insight, not numbers.” R. W. Hamming [Ham87].
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1.2 Computer simulations

Technical Point 1.1 Masses do not affect the thermodynamics

Consider a system of N particles expressed as a function of their coordinates ri and mo-
menta pi. Assuming the potential energy only depends on the coordinates, the Hamiltonian
can be written

H =
N∑

i=1

p2
i

2mi

+ V (r1, . . . , rN), (1.3)

where V (r1, . . . , rN) describes the interaction between all particles. The corresponding
classical partition function is

Z =

∫
dpNdrN

N !h3N
e
−β

»

PN
i=1

p2
i

2mi
+V (r1,...,rN )

–

, (1.4)

where h is Planck’s constant and β = 1/kBT . Because the kinetic term only involves
momenta and the potential only depends on coordinates, the integral can be split into two
terms

Z =

∫
dpN

N !h3N/2
e
−β

PN
i=1

p2
i

2mi

︸ ︷︷ ︸
Ideal gas contribution

∫
drN

h3N/2
e−βV (r1,...,rN )

︸ ︷︷ ︸
Interactions

. (1.5)

The second term in Equation 1.5 does not show any dependence on particle masses (this
is only true if V does not depend on the set of momenta pi). The first term is the ideal
gas contribution. Its integral can be solved analytically

∫
dpN

N !h3N/2
e
−β

PN
i=1

p2
i

2mi =
1

N !

(
2πkBT

h2

)3N/2 N∏

i=1

m
3/2
i . (1.6)

It can readily be seen that the mass dependent term contributes a constant prefactor, thus
merely shifting the free energy.

This shows that, as far as static properties are concerned, the proper choice of particle
masses is irrelevant. Previous studies have used this feature to increase the integration
time step in molecular simulations (e.g., [WW10]).

Incidentally, this factorization of the partition function only works classically. The situ-

ation is very different for the quantum partition function Tr
(
e−βĤ

)
. Since positions and

momenta do not commute, a factorization of the exponential à la exp
[
f(P̂ ) + g(Q̂)

]
=

exp
[
f(P̂ )

]
· exp

[
g(Q̂)

]
is not possible. This indeed gives rise to thermostatically observ-

able effects, e.g., the strength of hydrogen bonds which involve deuteriums is slightly bigger
[Kat65].
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1 Background and Motivation

details to choose secondary/tertiary structure on its own while cutting down significantly
on the overall resolution ([BD09]). It is later applied to several biophysical problems: (i)
the folding kinetics of α-helix and β-hairpin peptides (chapter 3), (ii) the thermodynamics
of protein folding cooperativity from a microcanonical perspective (chapter 4; [BBD10]),
(iii) the aggregation of β-amyloid peptides (chapter 5), and (iv) the cross-parametrization
of the force-field with a CG lipid model (chapter 6).
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2 Coarse-Grained Peptide Model

An intermediate-resolution, implicit-solvent, coarse-grained peptide model is in-
troduced. The high level of resolution devoted to the backbone allows for uncon-
strained secondary structure formation (unlike Gō models). The model is shown
capable of folding simple peptides and reproduce a realistic oligopeptide aggregation
scenario using a single force field.

The field of coarse-grained protein modeling is very diverse and has a rich history owing
to a wide variety of problems to tackle, as well as length- and time-scales to look at (e.g.,
[Gō83, SO94, BOSW95, SHG00, SH01, CGO02, FIW02, DBB+03, HGB03, FTLSW04,
PDU+04, Toz05, AFS06, ANV07, DM07, AYS08, Cle08, HWW08, HJBI08, MKP+08,
TZV08, YFHG08, Bet09, ACCDP10, SEB10]). Various levels of resolution have been
designed to study many different problems. On the coarser-side of particle-based simu-
lations, conformational effects of hydrophobic interactions were studied using lattice sim-
ulations [LD89]. This is a very powerful tool that is still widely used when looking at
large-scale cooperativity effects. Soon, off-lattice simulations were developed using one
bead per amino acid with implicit solvent, famous examples are Gō models [Gō83]. This
level of resolution allows for much more conformational freedom, which is key to structural
studies. One underlying constraint in Gō models is that structure is biased towards the
native configuration of the protein because the remaining degrees of freedom don’t suffice
to accurately represent the system’s phase space, including secondary structure motifs.
Intermediate resolution models (more than one bead per amino acid) have been designed
to investigate structural properties of proteins while emphasizing certain aspects. For in-
stance, the recently introduced MARTINI force field [MKP+08] opts for a high resolution
on the protein’s side chains, while the backbone is represented by only one bead per amino
acid. The force field was parametrized using partitioning coefficients between water and
a (similarly coarse-grained) lipid membrane. By doing so, protein-lipid systems, such as
transmembrane proteins, can be accurately investigated (e.g., peptide aggregation and pore
formation in a lipid bilayer [TSV+08]). Other models with a comparable overall resolution
shift the emphasis (in terms of modeling detail) on the backbone instead of the side chain
in order to look at structure and conformational properties without biasing the force field
to the native configuration. Several force fields (see e.g., [TLSW99, ISW00, FIW02]) have
been reported to fold de novo helical proteins. These models incorporate only a subset of
amino acids, emphasizing their chemical effects (e.g., hydrophobic, polar, glycine residue).

Intermediate level resolution models have shown promising results in capturing local
conformations, and reproducing basic aspects of secondary structure formation while gain-
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2 Coarse-Grained Peptide Model

ing much computational efficiency compared to atomistic models. This is partly due to
the removal of solvent, which allows for significant speedup, as water typically represents
the bulk of a simulation in such systems. As a result, it is necessary to treat important
solvent effects implicitly, as they are determining factors in a protein’s conformation. This,
of course, is also one of the main limiting factors of such approaches.

While α-helices are comparatively easy to obtain in such models, β-sheets and structures
are more difficult to stabilize. There are several reasons for this. First, the enthalpic
gain per amino acid is weaker compared to α-helices [YH95]. Second, Yang and Honig
[YH95] have shown that side-chain–side-chain interactions have a decisive role in sheet
formation. And third, the stabilization energy contains a contribution from interactions
between dipoles of successive peptide bonds that is usually neglected in simple models, yet
it favors the β- over the α-structure [CSM06]. Apart from these local effects, the stability of
extended conformations also depends greatly on cooperativity. Other than stabilizing folds,
this can also lead to peptide aggregation. Besides being an interesting physical problem,
peptide aggregation is associated with countless biological processes. It also plays a crucial
role in many diseases, ranging from sickle cell anemia [LBZ+00] to Alzheimer’s [LL06].

In this chapter, we present a CG model of a four-bead-per-amino-acid model in implicit
solvent. It differs from previously mentioned intermediate level force fields [TLSW99,
ISW00, FIW02] in several ways. First, by improving on amino acid specificity1 it provides
a more detailed free energy landscape. Second, protein folding is quantitatively probed by
comparing our molecular dynamics (MD) simulations with experimental data, instead of
the lowest energy structure that is sampled. Third, after tuning our force field with respect
to one protein (in terms of tertiary structure reproduction), it is tested on other proteins
to understand how reliable this procedure is. Fourth, an important design criterion for
our model is its ability to produce a realistic balance between α-helical and β-extended
conformations, thereby avoiding a bias toward any particular secondary structure.2 Finally,
we monitor the aggregation of small peptides (into β-sheets) to test whether a realistic
aggregation scenario in the long-time and large length-scale regime can be achieved.

In order to parametrize and test our force field as finely as possible, we systematically
compare the performance of our CG model with experimental data. We hasten to add,
though, that refining CG models is no attempt to compete with atomistic force fields.
Such an endeavor strikes us as neither likely to succeed, nor to be in line with the reasons
one pursues coarse-graining in the first place, namely to gain a physical understanding
of fundamental mechanisms and universals of complex molecular structures. However,
in systems as delicate as marginally stable proteins a subtle local interaction can have a
substantial global impact, and uncovering causations of this type is well within the scope
of CG studies.

This chapter is divided into several parts: the mapping scheme will explain how atomistic

1A full spectrum of amino acid hydrophobicities is used rather than, say, a smaller subset which
represents types of amino acids (e.g., hydrophobic, polar, charged; [DBB+03]). See below for details.

2This is in contrast to other models that can only fold helical proteins (e.g., [TLSW99, ISW00, FIW02])
or tune secondary structure propensity via the temperature (e.g., [DBB+03]).
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2.1 Mapping scheme

details were coarse-grained out, the different interactions as well as parameter tuning and
simulation methods will be described, and finally several applications will show to what
extent the model can reproduce structural properties.

2.1 Mapping scheme

2.1.1 Overall geometry

An amino acid is modeled by three or four beads (Figure 2.1). These beads represent the
amide group N, central carbon Cα, carbonyl group C’, and (for non-glycine residues) a side
chain Cβ. The first three beads belong to the backbone of the protein chain, whereas the
last one represents the side chain and is responsible for amino acid specificity. This high
level of backbone resolution is necessary to account for the characteristic conformational
properties underlying secondary protein structure. As far as reducing the number of degrees
of freedom is concerned, this high resolution is regrettable, as the backbone is represented
almost atomistically. Indeed, models that do not require the CG protein to represent local
structure generally do away with most (if not all) backbone beads (e.g., the MARTINI
model for proteins [MKP+08]). However, here we explicitly aim at a model that is at least
in principle capable of finding secondary structure by itself. This is for instance necessary
in applications where this structure is known to change (e.g., misfolding, spontaneous
aggregation) or not known at all.

2.1.2 Parameter values

Geometric parameters were taken from existing peptide models [TLSW99, ISW00, DBB+03]
and are reported in Table 2.1.3 Even though the spatial arrangement of the beads was fixed
beforehand, the van-der-Waals radii were left as free parameters. Following the abovemen-
tioned references, Cβ was set at the location of the first carbon of the side chain (hence our
nomenclature), directly connected to the backbone. Its location will generally not coincide
with the center of mass of the atomistic side chain (which for larger and flexible side chains
has no fixed position with respect to the backbone), but the concomitant substantial re-
duction of tuning parameters is necessary for our parametrization scheme, as we will see
below.

All side chain beads have been given the same van-der-Waals radius, except for glycine,
which is modeled without a side chain. This accounts for the biggest difference in the
Ramachandran plot of amino acids, namely the large flexibility of an achiral glycine residue,
as opposed to the substantial chiral sterical clashes between all the others [FP02]. On the
other hand, it does not represent the size differences between non-glycine residues and will
thus likely cause problems if packing issues are important, e.g., inside globular proteins.

3Ref. [BD09] incorrectly expressed kangle in units of E/deg2 instead of E/rad2.
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C’

C’ N

N

Cα

Cβ

φ ψ

ω

Figure 2.1: Schematic figure of the local geometry of the protein chain. The solid beads
comprise one amino acid. Neighboring amino acid beads are represented
in dashed lines. Reprinted with permission from Bereau, T. and Deserno,
M. J. Chem. Phys. 130 (2009), 235106 [BD09]. Copyright 2009, American
Institute of Physics.

Both the location and the size of the side chain is thus modeled in an approximate and
highly simplified way. Why not be more sophisticated? Since these degrees of freedom are
accounted for, one might as well give them the best possible parameter values. Ideally this is
indeed what one would like to do, but the catch is that the necessary tuning is very difficult.
Having 20 different amino acids gives—in the worst case—203 = 8000 local Ramachandran
plots for the (φ, ψ) angles between three consecutive amino acids. These would first need to
be determined atomistically and then—via some suitable matching procedure—translated
into CG side chain properties. Clearly, many obvious simplifications would be possible
and the task is not nearly as daunting. The number of free parameters would nevertheless
be substantially increased and their tuning would require both automated techniques and
enormous computing resources. In contrast, in the present model we aim to keep the
number of free parameters as low as possible, such that judicious tuning by hand is still a
viable option. We will see below that it is also successful. While optimization of side chain
parameters will remain a long term goal, this is certainly not the point where to start.

Finally, amino acids that are in the middle of a protein chain form peptide bonds with
their neighbors. This is not so at the ends of the chain, and the structure is slightly
different. Nonetheless, we model the end beads identically.
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2.1 Mapping scheme

Bond lengths
NCα CαC’ C’N CαCβ

r0 [Å] 1.455 1.510 1.325 1.530
kbond [E/Å2] 300 300 300 300

Bond angles
NCαCβ CβCαC’ NCαC CαC’N C’NCα

θ0 [deg] 108 113 111 116 122
kangle [E/rad2] 300 300 300 300 300

Dihedrals
φ∗ ψ∗ ω ωPro improper

k [E ] -0.3 -0.3 67.0 3.0 17.0
n 1 1 1 2 1

ϕ0 [deg] 0 0 180 0 ∓120

Table 2.1: Bonded interaction parameters used in the model. The dihedrals denoted with
an asterisk were determined during parameter tuning (see section 2.4). All
parameters are expressed in terms of the intrinsic units of the system (see
subsection 2.1.3). k represents the interaction strength of Fourier mode n (see
main text), with equilibrium value ϕ0. ωPro refers to the ω dihedral around the
peptide bond for a proline residue. The sign of the improper dihedral angle ϕ0

is linked to the chirality of the isomer; the l-form requires a negative sign. For
each angular potential, only a single mode n was used.

2.1.3 Units

All lengths are measured in units of L, which we choose to be 1 Ångström. For the energies
we found it convenient to relate them to the thermal energy, since it is this balance which
determines the overall protein conformation. We thus define the energy unit E = kBTr =
1.38× 10−23JK−1 × 300 K ≈ 4.1× 10−21J ≈ 0.6 kcal mol−1 as the thermal energy at room
temperature.

Masses will be measured in the unitM, which is the mass of a single CG bead. We will
assume all beads to have the same mass.4 An amino acid weighs on average 110 Da. By
distributing mass equally among the four beads N, Cα, Cβ, and C′, this gives an average
mass ofM≃ 4.6× 10−26 kg.

The natural time-unit in our simulation is τ = L
√
M/E . Using the length, energy,

4The precise parametrization of masses only matters for dynamical issues—it does not affect equilib-
rium properties (see Technical point 1.1 on page 11).
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2 Coarse-Grained Peptide Model

and mass-mappings from above, we find τ ∼ 0.1 ps. As explained in the previous chapter
(subsection 1.2.3 on page 8), this unit of time correctly describes the instantaneous dynam-
ics of a fictitious CG bead-spring system. However, it does not measure the time which the
real protein system requires to undergo the same conformational change as observed in the
simulation. An attempt to quantify how much faster the coarse-grained model operates
is presented in chapter 3. It should be recalled that as far as equilibrium questions are
concerned the precise time mapping is, of course, irrelevant.

2.2 Interactions

2.2.1 Bonded interactions

The local structure is constrained by bonded interactions. Bonds and angle potentials are
chosen to be harmonic:

Vbond(r) =
1

2
kbond(r − r0)2 , (2.1a)

Vangle(θ) =
1

2
kangle(θ − θ0)

2 . (2.1b)

The spring constants kbond and kangle are set high enough to keep these coordinates close
to their minimum (within ∼ 5%). Table 2.1 reports these parameters.

Up to thermal fluctuations bonds and angles are thus fixed. Flexibility of the overall
structure enters through the dihedrals, the possibility to rotate around a chemical bond. In
the case of proteins, two out of three backbone dihedrals are very flexible and are responsi-
ble for the diverse set of local conformations. These dihedrals are the φ and ψ coordinates,
defined by the sets of beads C’NCαC’ and NCαC’N, respectively (see Figure 2.1). They
describe the angle between two planes (e.g., φ is the angle between the planes C’NCα and
NCαC’) and obey the following convention: taking any four beads #1,2,3,4 and looking
along the vector from bead #2 to bead #3, the angle “0” will correspond to the confor-
mation in which beads #1 and #4 point into the same direction (i.e., when they visually
overlap). The rotation of plane #1,2,3 with respect to plane #2,3,4 away from this state
defines the angle; the counterclockwise sense counts positive (Figure 2.2). Because the po-
tential of rotation around the bond between sp3- and sp2-hybridized atoms has a rather low
barrier compared to thermal energy at room temperature, we let the beads rotate freely.
However, we will later include a contribution to the coordinates φ and ψ accounting for an
effective non-bonded dipolar interaction (see below).

The third dihedral along the backbone chain, ω, defined by CαC’NCα, is located at the
peptide bond (see Figure 2.1). This bond corresponds to the rotation around two sp2-
hybridized atoms, which involves a symmetric potential with two minima, separated by a
rather high barrier. The two conformations, cis and trans, have an angle of 0◦ and 180◦,
respectively. The cis conformation tends to be sterically unfavored for most amino acids,
except for proline, where there is no specific preference due to its special side chain linkage.
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#1#1

#2

#3

#4
#4

#2,3
ϕ

ϕ

(a) (b)

Figure 2.2: Schematic figure of the convention used when measuring a dihedral ϕ from the
four beads #1,2,3,4. Side view (a) and view along the vector from bead #2 to
bead #3 (b).

Generally, dihedrals can be written as a Fourier series in the rotation angle. Here we
will restrict to a single mode and describe the interaction as

Vdih(ϕ) = kn

[
1− cos(nϕ− ϕn,0)

]
(2.2)

with coefficient kn and phase ϕn,0. In this model we represent the peptide bond using only
one minimum (n = 1) centered around the trans conformation. In this case ϕ0 ≡ ϕ1,0 is
the equilibrium orientation of the dihedral and k ≡ k1 is the stiffness describing deviations
from the equilibrium angle. For a peptide bond located right before (i.e., on the N-terminal
side) a proline residue, we model the isomerization by a dihedral potential with two minima
(n = 2, k ≡ k2), one at the cis conformation, and the other one at trans. This allows for a
more natural representation of the different conformations proline can take. Depending on
the problem one is interested in (and the time scales which matter), the energy barrier can
be tuned to either freeze the isomerization, or set to a low value to allow efficient sampling.
We chose the latter in this work. This choice will of course affect the kinetics of the system.

The central carbon Cα not only links the backbone to the side chain, its sp3 hybridization
imposes a tilted orientation of the CαCβ vector compared to the NCαC’ plane. Its four
bonds are located at the vertices of a tetrahedron, linking the backbone atoms N and
C’, as well as the Cβ side chain and an extra hydrogen (not modeled by us). This has an
important consequence, because a carbon atom with four different substituents is chiral and
hence optically active. All amino acids except glycine exist as two different stereoisomers.
The l-form is realized in native amino acids: looking at the central carbon Cα, with the
hydrogen atom pointing away, the isomer has l-form if the three other substituents C’,
Cβ, and N are arranged in a counterclockwise fashion (“CORN-rule”). This amino acid
chirality is a central feature in proteins and their secondary structure, and we account for
it by including an “improper dihedral” between the beads NCαC’Cβ. This keeps a tilt
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2 Coarse-Grained Peptide Model

between the backbone plane, NCαC’, and the plane intersecting the side chain with two
backbone beads, CαC’Cβ, such that all angles are correct and the CORN-rule is satisfied.
The interaction has the same form as other dihedrals, given by Equation 2.2. The two
stereo-isomers only differ in the sign of the dihedral equilibrium angle ϕ0 and can thus
both be modeled.

2.2.2 Non-bonded interactions

Probably the biggest challenge in any coarse graining scheme is determining the non-
bonded interactions. Unlike bonded interactions, their form is not intrinsically obvious
and the system behavior depends very sensitively on them. In the following section every
interaction introduced will require at least one free parameter that has to be determined
by tuning. The key technical difficulty of this enterprise is that all parameters are typically
highly correlated. Optimization is thus an intrinsically multidimensional problem and we
therefore intend to limit the number of free parameters as much as possible. While one
might envision “hands-off” tuning schemes in which optimization occurs in an automated
fashion [MBF+00], for the present problem we found this difficult to implement for two
reasons: first, parameter variations often have a rather inconspicuous impact on target
observables and the determination of the right gradient in parameter space thus can require
very substantial computer time. And second, some optimization aims are hard to quantify
in numbers and rather require judgment and choice—e.g., the question how one balances
the quality of a local Ramachandran plot against global folding characteristics.

Backbone

Steric interactions are closely linked to secondary and tertiary structures for two reasons:
first, local interactions along the protein chain will shape the Ramachandran plot; second,
contact between distant parts of the amino acid chain will determine protein packing on
larger scale. In order to model a local excluded volume, we use a purely repulsive Weeks-
Chandler-Andersen (WCA) potential

Vbb(r) =





4ǫbb

[(σij

r

)12

−
(σij

r

)6

+
1

4

]
, r ≤ rc

0, r > rc

(2.3)

where rc = 21/6σij and σij is the arithmetic mean between the two bead sizes involved, fol-
lowing the Lorentz-Berthelot mixing rule. Just like the bead sizes, the energy ǫbb is a free
parameter, though we use only one parameter for all backbone-backbone and backbone-
side chain interactions, since for the WCA potential the energy scale is largely immaterial.
Following the practice in atomistic simulations, we do not calculate excluded volume inter-
action between beads that are less than three bonds apart, since their distance is largely
fixed through the bonded interactions.

20



2.2 Interactions

Side chain interactions

Amino acids differ in their water solubility. This can be quantified experimentally by mea-
suring the partitioning of residues between water and a hydrophobic environment (e.g.,
[FP83]). The ratio of densities (or strictly speaking: activities) of a residue in the two
environments can be translated into a free energy of transfer from one medium to an-
other [MS97]. Hydrophobicity is one prominent cause for certain amino acids to attract.
However, there are other reasons why residues interact (e.g., charges or hydrogen bonds
between side chains) and this combination can be probed by statistical analyses of residue-
residue contacts in proteins [MJ96, SJKG97, MJ99, BT99, WL00]. One then arrives at
a phenomenological interactions energy between any two residues A and B that depend
on the number of close AB-contacts that are found in a pool of protein structures.5 This
mean-field approach (it averages over all neighboring contacts) not only contains informa-
tion on the relative hydrophobicity of amino acids, but also partially incorporates effects
coming from additional interactions (e.g., salt bridges or side-chain hydrogen bonds). In
the absence of explicit solvent we represent this phenomenological cohesion by introduc-
ing an effective attraction (of standard Lennard-Jones 12-6 type) between Cβ side chain
beads, whose strength is mapped to such a statistical analysis of residue-residue contacts.
Specifically, we used Miyazawa and Jernigan’s (MJ) statistical analyses [MJ96] to extract
a relative attraction strength between residues. To translate this into an absolute scale,
one additional free parameter ǫhp is needed.

Miyazawa and Jernigan analyzed residue-residue contacts in crystallized proteins. By
modeling interactions via square-well potentials, they obtained interaction strengths ǫMJ

ij

for every i-j pair of residues. We reduced the resulting 20× 20 interaction matrix further
by deconvolving it (see below) into 20 interaction parameters ǫi (one for each amino acid),
which approximately recreate all interactions as the geometric mean of the two amino acids
involved, ǫMJ

ij ≈ ǫij =
√
ǫiǫj, following the Lorentz-Berthelot mixing rule. Each term is then

normalized

ǫ′i =
ǫi −mink ǫk

maxk ǫk −mink ǫk
(2.4)

such that the most hydrophilic residue has a weight of 0 and the most hydrophobic a weight
of 1, and the normalized interaction contact is denoted ǫ′ij =

√
ǫ′iǫ

′
j. Finally, we multiply

this term by the overall interaction scale ǫhp. One limitation in varying the interaction
strength of a Lennard-Jones potential is that a low ǫ′ij will tend to flatten out the repulsive
part of the interaction. This will, as a result, fade the excluded volume effect for certain
side chain beads, which is likely to exacerbate packing problems in dense regions. To
overcome this issue and keep the same excluded volume for all side chain beads, we model
the overall interaction by using a Lennard-Jones potential for the attractive part linked
to a purely repulsive WCA potential for smaller distances. We join the two potentials at
the minimum value of the interaction in such a way that both the potential and its first

5This is commonly referred to as a “knowledge-based approach.”
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2 Coarse-Grained Peptide Model

derivative are continuous. Overall, the interaction will have the following form

Vhp(r) =






4ǫhp

[(σCβ

r

)12

−
(σCβ

r

)6

+
1

4

]
− ǫhpǫ

′
ij, r ≤ rc

4ǫhpǫ
′
ij

[(σCβ

r

)12

−
(σCβ

r

)6
]
, rc ≤ r ≤ rhp,cut .

0, r > rhp,cut

(2.5)

Relative (unnormalized) coefficients ǫi were calculated by minimizing the expression

χ2 =
1

N

N∑

i,j≥i=1

χ2
ij , (2.6)

where χij = ǫMJ
ij −

√
ǫiǫj, N is the number of matrix coefficients (210 independent elements

in a 20 × 20 symmetric matrix), and the sum goes over all such elements. The normal-
ized coefficients ǫ′i that were obtained by simulated annealing followed by proper scaling
(Equation 2.4) are reported in Table 2.2.

Let us quantify the quality of this deconvolution and the suitability of the amino-acid
specific hydrophobic strength ǫ′i. Recall that the correlation coefficient c between two data
sets {Xi} and {Yi} is defined as

c =
1

n

n∑

i=1

(
Xi −X
σX

)(
Yi − Y
σY

)
, (2.7)

where n is the number of data points in each set, X and Y are their averages, and σX and
σY are their standard deviations, respectively. Our inferred 210 ǫij values and their original
ǫMJ
ij counterparts have a correlation coefficient of 98%, which decreases by only 3 points

when comparing the MJ matrix to the normalized interaction contacts ǫ′ij. Moreover, the
20 individual values ǫi as well as the ǫ′i have a 87% correlation with the experimental hy-
drophobicity scale measured by Fauchere and Pliska [FP83]. Since the MJ matrix accounts
for more than hydrophobicity, this further drop in the correlation coefficient is expected.
However, its still relatively large value suggests that the hydrophobic effect is the domi-
nant contribution to the MJ energies. This is the reason why we refer to the interactions
(Equation 2.5) summarily as “hydrophobicity.” The fitting procedure gave a χ2 value of
0.064, which translates into an average relative error ∆ǫ = 0.25 between coefficients along
the diagonal of the MJ matrix, where this deviation is defined by ∆ǫii = χii/ǫ

MJ
ii . Even

though most coefficients did not deviate more than 15% from the MJ matrix, Lysine, the
most hydrophilic residue, is off by a factor of 4. Various sets of parameters with a com-
parable χ2 value showed equivalent correlation properties, even though deviations were
located on different amino acids. This rules out the hypothesis of a systematic failure of
our N 2 → N deconvolution.

A comparison between the normalized hydrophobicity scale derived from the MJ ma-
trix (Table 2.2) and experimental hydrophobicity scales (e.g., [FP83] and Table 1.1 and
Table 1.2) shows discrepancies for several amino acids:
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Lys Glu Asp Asn Ser Arg Gln Pro Thr Gly*
K E D N S R Q P T G*

ǫ′i 0.00 0.05 0.06 0.10 0.11 0.13 0.13 0.14 0.16 0.17
∆ǫii 4.00 0.50 0.16 0.01 0.05 0.20 0.20 0.10 -0.01 -0.05
χij -0.48 -0.45 -0.19 -0.02 -0.08 -0.31 -0.31 -0.17 0.02 0.11

His Ala Tyr Cys Trp Val Met Ile Phe Leu
H A Y C W V M I F L

ǫ′i 0.25 0.26 0.49 0.54 0.64 0.65 0.67 0.84 0.97 1.00
∆ǫii -0.11 0.00 0.03 -0.14 0.05 -0.02 0.01 0.02 0.04 0.05
χij 0.35 0.01 -0.14 0.76 -0.24 0.12 -0.05 -0.12 -0.32 -0.38

Table 2.2: Normalized scale of amino acid hydrophobicities ǫ′i using the Lorentz-Berthelot mixing rule for the cross
terms, as well as relative and absolute error, ∆ǫi and χij, from the diagonal elements of the MJ matrix (see
text for definition). Note that the side chain of glycine (marked with an asterisk in the table) is not modeled.
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2 Coarse-Grained Peptide Model

Pro Proline is categorized as hydrophobic from experimental hydrophobicity scales, while
it is given a low normalized relative hydrophobicity ǫ′i = 0.14 from the MJ matrix
deconvolution. The reason is straightforward: proline tends to play a role in turns
and loops due to its unique chemical structure.6 This creates an anomaly between
its water/oil partitioning free energy and its average distance to other amino acids.

Cys Cysteine exhibits the opposite behavior: while it consists of a polar uncharged group,
the relative hydrophobicity is rather high (ǫ′i = 0.54—close to tryptophan, a weakly
hydrophobic residue). This is explained by the tendency of cysteine to form disulfide
bridges which might become buried inside hydrophobic cores.

These two amino acids are likely to be the main sources of discrepancy between the two
descriptions of hydrophobicity presented here.

It is possible to account for solvent effects in even further detail, for instance by including
the layering of water molecules around the solute into the effective potentials [CGO02].
In our attempt to develop a simple force field and only keep a few important aspects of
protein interactions, and in view of the approximation already made, we decided against
such local details.

Hydrogen bonds

Since our model does not contain any electrostatics, it is necessary to model hydrogen
bonds implicitly as well. The interaction depends on the relative distance and orientation
of an amide and a carbonyl group. A real amide group is composed of a nitrogen with
a hydrogen, whereas the carbonyl group has a carbon double-bonded to an oxygen. The
hydrogen bond is favored when the N, H, and O atoms are aligned. Several interaction
potentials for hydrogen bonding have been proposed in the literature [TLSW99, ISW00,
SH01, GCLK02, MG07, YFHG08]. For its simplicity and corresponding CG mapping, we
follow Irbäck et al. [ISW00] by using a radial 12-10 Lennard-Jones potential combined with
an angular term

Vhb(r, θN, θC) = ǫhb

[
5
(σhb

r

)12

− 6
(σhb

r

)10
]
×
{

cos2 θN cos2 θC, |θN|, |θC| < 90◦

0, otherwise
(2.8)

where r is the distance between the two beads N and C’, σhb is the equilibrium distance
(Table 2.3), θN is the angle formed by the atoms HNC’ and θC corresponds to the angle
NC’O (Figure 2.3). The main motivation for using a power of 10 instead of 6 in the
Lennard-Jones potential is a narrower confinement of the hydrogen bond length. Since our
model does not represent hydrogens and oxygens, these particle positions were calculated
via the local geometry of the backbone. Any NC’ pair can form a hydrogen bond, except if
N belongs to proline, since its side chain connects to the preceding amide on the backbone.

6Recall that the side chain of proline bonds to the amide group (see Table 1.1 on page 2).
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2.2 Interactions

Backbone excluded volume
σN [Å] σCα

[Å] σC′ [Å] ǫbb [E ]
2.9 3.7 3.5 0.02

Hydrophobicity
σCβ

[Å] ǫhp [E ] rhp,cut [Å]

5.0 4.5 10∗

Hydrogen bonding
σhb [Å] ǫhb [E ] rhb,cut [Å]

4.11∗ 6 8∗

Table 2.3: Non-bonded interactions. The length σ represents the diameter of a bead. Most
parameters were determined after parameter tuning, except the ones denoted
by an asterisk. See section 2.4.

The hydrogen bond leads to one more free parameter, its interaction strength ǫhb. Technical
point 2.1 derives the force associated with the potential described in Equation 2.8.

The main drawback of such a multibody potential is the necessity to implement its
functional form in a MD simulation package. While this interaction was implemented in
the ESPResSo package [LAMH06, WWWc], not all simulation engines easily allow for
customized interaction potentials. Alternatively, others have successfully modeled effective
hydrogen bonds using sets of pair interactions, in which directionality is recreated by
an attractive interaction along the axis of the hydrogen bond (e.g., N-C’ atoms) with a
set of repulsive interactions in its neighborhood [DBB+03, HWJW10]. An early attempt
to convert Equation 2.8 into pair potentials suggests that small discrepancies between
the energetics of the multibody potential and a pair-only analog drastically affect the
conformations sampled. Further investigations will be required to successfully replace
Equation 2.8.

Electrostatics

There is no explicit treatment of side chain charges in the force field. Specifically, we do
not model the interaction between charged residues. However, this piece of information is
partially included in the MJ matrix, as the method is based on statistical analysis of residue-
residue distances.7 The electrostatic interaction involved between two charged residues will
be implicitly sampled, and its effect reflected in the interaction coefficient. Nevertheless,

7Unfortunately the +/− charge asymmetry gets lost after the deconvolution of the MJ interaction
matrix.
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2 Coarse-Grained Peptide Model

Technical Point 2.1 Force derivation of the hydrogen bond interactionPSfrag replacemen
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We consider the following multi-body potential

V (rik, θjik, θikn) = ǫ

[
5

(
σ

rik

)12

− 6

(
σ

rik

)10
]

cos2 θjik cos2 θikn (2.9)

where the indices represent particles in a geometry described in the figure (bonded partners
represented by full lines). The component α of the force exerted on particle l is given
by fα

l = −∂V/∂rα
l . The angular dependence of the potential is calculated using the

relative positions of virtual particles j and n (dashed beads) such that (i) their position
is constructed by simple vector additions rij = rai + rbi and rkn = rck + rdk, where
rij = rj − ri, and (ii) the forces acting on them is redistributed among all others.
Denoting S(rik) as the radial part of the potential and its derivative

S ′(rik) = 60

(
σ10

r11
ik

− σ12

r13
ik

)
, (2.10)

the force is given by

fα
l = cos2 θjik cos2 θikn

rα
ik

rik

S ′(rik)(δli − δlk)

− 2 cos2 θikn cos θjikS(rik)

{
(2δli − δla − δlb)

(
rα
ik

rijrik

− cos θjik

rα
ij

r2
ij

)

+ (δlk − δli)
(

rα
ij

rijrik

− cos θjik
rα
ik

r2
ik

)}

− 2 cos2 θjik cos θiknS(rik)

{
(2δlk − δlc − δld)

( −rα
ik

rikrkn

− cos θikn
rα
kn

r2
kn

)

+ (δli − δlk)
(

rα
kn

rikrkn

+ cos θikn
rα
ik

r2
ik

)}
, (2.11)

δij corresponds to the Kronecker delta.
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Cα
Cα

N N
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Figure 2.3: Schematic figure of the hydrogen-bond interaction. The light beads (H and
O) are not explicitly modeled in the simulation; their positions are inferred
from their bonded neighbors. Reprinted with permission from Bereau, T. and
Deserno, M. J. Chem. Phys. 130 (2009), 235106 [BD09]. Copyright 2009,
American Institute of Physics.

an explicit treatment of charged residues would allow one to look into properties that
depend on the environment’s pH or ionic strength. For a solution that has a high salt
concentration (e.g., under physiological conditions), ions are able to screen most of the
electrostatics, such that a Debye-Hückel potential would be appropriate to model this
interaction. By compensating for the difference in binding energy for all the coefficients
involved, one could disentangle charge effects from the MJ matrix. This, however, has not
been done in the present model.

Dipole interaction

The interactions described above were sufficient to fold and stabilize α-helices, but not
β-sheets. Chen et al. [CSM06] have pointed out that there is an important contribution
usually neglected in generic models: carbonyl and amide groups at the peptide bond form
dipoles that interact with each other. Mu and Gao [MG07] showed that the nearest-
neighbor interaction is enough to sufficiently raise the occurence of β-conformations. Ef-
fectively, all dipoles along a helix are parallel compared to more favorable antiparallel
neighboring dipoles on a β-sheet.

From a computational stand point, a dipole-dipole interaction

Vdd(pi,pj) =
ǫdd

r3

[
pi · pj − 3 (pi · r̂)(pj · r̂)

]
(2.12)

between two dipoles pi and pj at a distance r from each other is inconvenient because
it is long-ranged. However, nearest-neighbor dipoles are all separated roughly by the
same distance, as all amino acids have the same backbone geometry. All dipoles also

27



2 Coarse-Grained Peptide Model

0.06

0.04

0.02

0

-0.02

-0.04

-0.06

ψ

180

120

60

0

-60

-120

-180

φ

180120600-60-120-180

0.06

0.04

0.02

0

-0.02

-0.04

-0.06

ψ

180

120

60

0

-60

-120

-180

φ

180120600-60-120-180

αα

ββ

Figure 2.4: Map of the nearest-neighbor dipole-dipole interaction for all sets of dihedral
angles φ and ψ (left), and the decoupled Fourier series approximation (right).
The central part of the left plot was not reproduced in order to emphasize
local difference in other regions of the plot (as can be seen in Figure 2.5, this
anyways is a sterically hindered region). Sterically favored regions of the plot
are circumscribed by a thick line, in addition to labels of α and β regions. The
two graphs were shifted and scaled for comparison. Reprinted with permission
from Bereau, T. and Deserno, M. J. Chem. Phys. 130 (2009), 235106 [BD09].
Copyright 2009, American Institute of Physics.

have the same magnitude, as they are formed from the same atoms. Therefore, the key
component of the interaction lies in the relative orientation between dipoles, and not in
their magnitude or relative distance. Successive dipoles therefore capture the orientation
of the local backbone geometry. Two neighboring dipoles will effectively measure the angle
difference between the two planes C’i−1NiCα,i and Cα,i C’iNi+1, where the index keeps
track of the amino acid involved (see Figure 2.1). As the effect is completely localized and
only affects the conformation of the amino acid backbone, we treat this interaction as a
bonded one, by effectively biasing the dihedral potentials of φ and ψ. To do so, we first
calculated Equation 2.12 for all combinations of dihedral angles with a 5◦ resolution. The
result is plotted on Figure 2.4 (left). The (sterically forbidden) central part of the plot was
removed to emphasize local differences in allowed regions.

In order to be efficient, the potential should decouple along the two coordinates, i.e., it
must be expressible as a sum U(φ, ψ) ≃ U(φ) + U(ψ). We use a single cosine function
centered around φ, ψ = 0 with identical amplitude along both coordinates to approximate
the neighboring dipole potential (Figure 2.4 (right)). Higher modes in the series have
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2.3 Simulations

shown to be negligible:

Vdip(φ, ψ) = kdip

[
(1− cosφ) + (1− cosψ)

]
. (2.13)

The value of the optimally tuned free parameter kdip is reported in Table 2.1. The dis-
crepancy between the plots is due to the enforced decoupling of the two coordinates φ
and ψ.8 Even though the final result looks rather inaccurate on the whole domain of the
function, it nevertheless recreates the one important effect of the interaction: the β region
is more favored than the α region (see labels in Figure 2.4 (left)). Moreover, the quality of
the fit should only be tested along the physically relevant domains of the Ramachandran
plot, most notably the α and β regions. In this sense, Equation 2.13 makes for a good
approximation of the dipole interaction, and is enough to recreate the physics that favors
β regions.

2.3 Simulations

MD simulations were performed with the ESPResSo package [LAMH06]. Simulations in
the canonical ensemble (NVT) were achieved by using a Langevin thermostat with friction
constant Γ = τ−1. The temperature was expressed in terms of the intrinsic unit of energy,
E . The force field is parametrized in order to reproduce a temperature of T = 300 K. The
integration time step used for all simulations is δt = 0.01 τ .

2.3.1 Initial conformations

Initial peptide conformations were generated using either: (i) a random structure, as
described in Technical Point 2.2, or (ii) atomistic or coarse-grained structure from a PDB
file. A PDB file, which contains the position of all atoms in a protein structure, can easily
be coarse-grained into the representation of this model by simply keeping the positions of
amide nitrogen N, central carbon Cα, carbonyl group C’, and side chain atom Cβ to their
atomistic coordinates while ignoring all others.

2.3.2 Warmup

Initial conformations often contain partially overlapping beads which produce high-energy
steric clashes. The stability of the discretized integrator for the equations of motion de-
pends on the steepness of the forces involved (the stiffest interaction determines the time-
step). Steric clashes will result in numerical instabilities due to the integration of steep
forces (e.g., large contribution from the r−12 term in the Lennard-Jones interaction).

8Using different amplitudes, kdip, for the two coordinates, or phase shifts (e.g., φ−φ0), did not improve
the agreement between the two plots significantly.
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2 Coarse-Grained Peptide Model

Technical Point 2.2 Generation of a random chain
Upon building a chain, most bonds (i.e., bond lengths, angles)

severely constrain its geometry. Only the dihedral interactions
are weak enough to allow large-scale flexibility. A random struc-
ture therefore corresponds to assigning random dihedrals along
the chain.

The chain was built sequentially starting from the N-terminus
(see Figure 2.1 for chain topology). The very first N bead is
randomly placed inside the simulation box. The next Cα bead
is placed at the surface of a sphere with radius corresponding
to the bond length NCα (see Table 2.1) with random orienta-
tion [AT93]. Next, the Cβ bead is constrained by the bond
length CαCβ and the bond angle NCαCβ, leaving out one de-
gree of rotational freedom. (Rotational freedom in the beads
N, Cα, and Cβ only applies for the first residue. All other
beads are fully constrained by an additional dihedral angle; see
Figure 2.2.) For this particle, as well as all subsequent ones,
it has shown easiest to calculate the coordinates of the new
bead using the previous ones in a local coordinate system, as
described in [PHR+05] and briefly summarized below.

A

B

C

D

R θ

φ

ẑ′

Let A, B, C, and D, be four neighboring beads where all particles but D have been
placed. The unit vector between beads B and C, b̂c = BC/|BC|, defines the local z′-axis,
whereas the previous bond vector AB will be oriented along both the z′ and x′ axes. The
local coordinate system can then be defined from the cross product of AB and b̂c

n̂ =
AB× b̂c
|AB× b̂c|

. (2.14)

The new atom D is expressed in the local coordinate system in terms of spherical coordi-
nates

D’ =




R sin θ cosφ
R sin θ sinφ
R cos θ



 , (2.15)

where R is the bond length between C and D, θ is the angle between B, C, and D, and φ
is the (random) dihedral angle between A, B, C, and D.

The transformation matrix M = [b̂c, n̂ × b̂c, n̂] allows to calculate the position of D in
the original coordinate system from the position of C and D’: D = MD’ + C.
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2.4 Parameter tuning

Free parameters Tuning method
σN, σCα

, σC′ , σCβ
, ǫbb Ramachandran plot

ǫhp, ǫhb, kdip Folding characteristics

Table 2.4: Table of free parameters in this CG model. The main test that was used to
determine a given parameter is denoted in the second column.

To avoid such behavior, it is necessary to first relax such overlaps before running the
simulation. Atomistic simulations typically rely on finding a local potential energy mini-
mum near the starting structure using, e.g., steepest descent or conjugate gradient methods
[HKvdSL08]. Here we warmup the system by running a simulation with all forces capped
at a specific value. The force value at which capping is performed is slowly increased until
it can be removed altogether.

2.4 Parameter tuning

There are various ways coarse-grained force fields can be parametrized. For instance: only
allowing non-bonded interactions between native contacts (Gō-type models) [Gō83]; parti-
tioning measurements of amino acids between water and a hydrophobic medium [MKP+08];
structure-based coarse-graining based on all-atom simulations [ANV07]; knowledge-based
potentials which intend to optimize parameters by using large pools of existing structures
[FTLSW04].

Parameter tuning in top-down CG models aims at reproducing a selected subset of
structural or energetic system properties. Since these parameters tend to be correlated, a
given set needs to be tested at all scales. In our force field, local conformations are tuned to
reproduce probability distribution functions of dihedral angles, which by a slight extension
of standard terminology we also called Ramachandran plots (see subsection 2.4.1). Large
scale (global) properties are targeted by studying folding events of a helical peptide (see
subsection 2.4.2). The final set of parameters was identified as the one we felt most capable
in reproducing properties on both levels. The physical conditions (temperature, density,
etc.) of the force field will be set by the systems we try to match.

Note that on the global level we tune our parameters using only one protein. Of course,
adding more proteins into the “training set” would incorporate more information, presum-
ably leading to a better founded force field. There exist various successful parametrization
schemes that rest on large ensembles of data [MS96, FTLSW04, MC06]. This, however,
needs to be balanced against the need to test, how reliable a given force field handles
proteins that were not part of its training set—a point we deemed more relevant.

Table 2.4 lists the eight free parameters that need to be determined. Because of time
constraints, and to obtain some intuition and feeling of each interaction involved, we made
a point of having our model tunable by hand, which is why we required the number of free
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2 Coarse-Grained Peptide Model

parameters to be as low as possible. As explained above, this is the main reason why we
decided against amino acid specific bead sizes. Adding even more free parameters, on top
of being time consuming during tuning, would make it difficult to obtain a consistent set
of parameters that would correctly describe both local and global conformations. Different
bead sizes would involve different Ramachandran plots, and all backbone parameters would
need to be consistent throughout.

The free parameters were tuned by trying to constrain parameter space as much as
possible, for instance by eliminating unphysical behavior (e.g., sterically hindered β region
in the Ramachandran plot, or too much helicity in secondary structures). Combining both
local and global tests was enough to settle for a satisfying set of parameters, using the
constraint that the dipole interaction strength was maximized. Even though this may
sound arbitrary when looking for a realistic α/β content ratio, it turned out to be very
difficult to use β structures as tests because they are so weakly stabilized. Indeed, we have
found that the final set point is still not strong enough to fully stabilize β-sheets during
folding events (see below). This shows that maximizing the dipole interaction strength
in this model does not lead to oversampling of β content, but merely sampling as much
extended conformations as possible before the force field cannot stabilize helical structures
anymore. Other simple tests can be used to exclude regions of parameter space. For
example, a hydrogen bond interaction that is too strong will lead to proteins that fold into
one long helix. Too strong hydrophobic interactions will collapse proteins into globules,
even native elongated helical structures. Bead size parameters were initially taken from
other CG models (e.g., [DBB+03, ISW00, TLSW99]) and tuned as little as possible to
recreate enough sampling of α/β content, while suppressing sterically hindered regions.

As for any physical system, the representative sampling of its phase space is prerequisite
to obtaining accurate thermodynamic information. Different schemes have been developed
to characterize and estimate the population of thermodynamic states [MLP04, TV77, PS04,
DMS+06]. In the present case, thermodynamic calculations were performed by combin-
ing parallel tempering [SW86] with the Weighted Histogram Analysis Method (WHAM)
[FS88, KRB+92, KRB+95] (more details can be found in Appendix A). The main idea
is to combine energy histograms from canonical simulations at various temperatures in
order to reconstruct the density of states of the system. The information contained in
these histograms is used to calculate a consistent set of free energy differences between
each simulation. Converging these free energies was done by using a recently developed
highly efficient algorithm (see [BS09] and Appendix A). Once the density of states is recon-
structed, one can obtain continuous approximations to all thermodynamic observables. By
combining WHAM with parallel tempering, we effectively improve sampling by reducing
correlations between data points.

2.4.1 Local conformations: Ramachandran plot

The Ramachandran plot [RRS63] records the occurrence and frequency of successive (φ, ψ)
angles in a protein. Since backbone flexibility is almost exclusively due to these two
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Figure 2.5: Free energy plots of tripeptides Gly-Gly-Gly (left) and Gly-Ala-Gly (right), as
a function of successive dihedrals φ and ψ, calculated at our reference temper-
ature T = 1 E/kB. The coloring represents the free energy difference with the
lowest conformation, in units of kBT . Reprinted with permission from Bereau,
T. and Deserno, M. J. Chem. Phys. 130 (2009), 235106 [BD09]. Copyright
2009, American Institute of Physics.

coordinates, the Ramachandran plot is an ideal reporter of local (secondary) structure:
α-helices and β-sheets belong to peaks in different regions of the plot. And since proteins
are highly constrained systems, low energy points on the Ramachandran plot are rather
well localized. Their accurate sampling is therefore prerequisite to the formation and
stabilization of reliable structures on larger scales. In the following we will be concerned
with the (thermal) distribution of the (φ, ψ) angles surrounding some particular amino
acid and, in a slight stretch of standard terminology, also refer to this probability density
as a Ramachandran plot.

The free parameters that most directly constrain the Ramachandran plot are the dif-
ferent bead sizes {σN, σCα

, σC′ , σCβ
} and, to a lesser extent, the excluded volume energy

prefactor ǫbb. We disentangled hydrogen bond and hydrophobicity effects from the Ra-
machandran plot by studying systems made of only three amino acids. From a steric point
of view we only distinguish between glycine and non-glycine amino acids,9 by either not
having a side chain bead at all (Gly) or by using a generic bead representing the 19 other
amino acids (Ala, for the sake of concreteness). It is then sufficient to study the two Ra-
machandran plots of Gly-Gly-Gly and Gly-Ala-Gly tripeptides, the smallest systems that
contain relevant information on successive dihedral angles φ and ψ. The reason why we sur-

9Proline and pre-proline are modeled like any other non-glycine residues.
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round the amino acid of interest with two Gly is to avoid hydrophobic interactions between
neighboring side chains. As a result, we solely probe steric effects. The Ramachandran
plots derived from the final set of parameters are shown in Figure 2.5 as free energy plots
obtained from using parallel tempering at temperatures kBT/E ∈ {0.5, 0.7, 1.0, 1.3, 1.6,
1.9, 2.2, 2.5} and reconstructing the density of states with WHAM. The free energy plot is
calculated at our reference temperature kBT/E = 1. The shading represents the free energy
difference with respect to the lowest conformation, in units of kBT . Notice the inherent
asymmetry in the Gly-Ala-Gly system, which reflects the chirality of the α-carbon. Both
α-helix (−60◦,−60◦) and β-sheet (−60◦, 130◦) regions are well populated, in agreement
with Ho et al. [HTB03]. Proper balance and connectivity between the two regions is cru-
cial for protein folding. This is tuned by the bead sizes and excluded volume energy, but
also depends on the dipole interaction kdip (see below). The achiral Glycine, on the other
hand, has no side chain, and permits many more conformations. One therefore often finds
glycine residues at the ends of helices.

A particular challenge was the fact that we model neither the amide-hydrogen nor the
carbonyl-oxygen explicitly, yet their steric effects strongly shape the Ramachandran plot
[HTB03]. This required subtle adjustments of the bead sizes of the N and C′ atoms
compared to their conventional van der Waals radii.

A poor sampling of local conformations can thwart the formation of realistic secondary
structure. Moreover, the relative weight of characteristic regions of the Ramachandran
plot determines to a large extent the α/β content. Even though the analysis of above-
mentioned tripeptides accounts for steric effects and the dipole interaction, it does not
consider hydrogen bonds and side chain interactions which are also important to stabilize
secondary structure. For this reason it is difficult to ascertain the quality of conformational
distributions without studying larger structures.

2.4.2 Folding of a three-helix bundle

In this section we study full size proteins to parametrize large scale interactions. We used
proteins found in the Protein Data Bank [WWWa] that were resolved experimentally in
aqueous solvent.

Our choice of reference protein is constrained by the limitations of our model. For
instance, salt- or disulfide-bridges cannot yet be represented and should thus play no role
in the reference protein either. Also, it was important to start with a simple structure rather
than a globular protein for which packing and cooperativity are more important. Following
Irbäck et al. [ISW00] and Takada et al. [TLSW99], we also tuned our force field on a three-
helix bundle. Direct comparisons with their models is difficult, though. First, these authors
do not incorporate specificity on every amino acid and only represent a few amino acid types
(e.g., hydrophobic, polar, glycine residue). Second, they only compared their simulations
to the lowest-energy structure found during the simulation, rather than experimental data.
In contrast, we use the de novo protein α3D (73 residues) and systematically compare
our results with the real structure resolved experimentally (using NMR) [WCB+99]. The
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Name PDB ID Structure Sequence

α3D 2A3D Three-helix bundle
MGSWA EFKQR LAAIK TRLQA LGGSE AELAA· · ·
FEKEI AAFES ELQAY KGKGN PEVEA LRKEA· · ·
AAIRD ELQAY RHN

GS-α3W 1LQ7 Three-helix bundle
GSRVK ALEEK VKALE EKVKA LGGGG RIEEL· · ·
KKKWE ELKKK IEELG GGGEV KKVEE EVKKL· · ·
EEEIK KL

S-824 1P68 Four-helix bundle

MYGKL NDLLE DLQEV LKNLH KNWHG GKDNL· · ·
HDVDN HLQNV IEDIH DFMQG GGSGG KLQEM· · ·
MKEFQ QVLDE LNNHL QGGKH TVHHI EQNIK· · ·
EIFHH LEELV HR

S-836 2JUA Four-helix bundle

MYGKL NDLLE DLQEV LKHVN QHWQG GQKNM· · ·
NKVDH HLQNV IEDIH DFMQG GGSGG KLQEM· · ·
MKEFQ QVLDE IKQQL QGGDN SLHNV HENIK· · ·
EIFHH LEELV HR

R1-69 1R69 Five short helices
SISSR VKSKR IQLGL NQAEL AQKVG TTQQS· · ·
IEQLE NGKTK RPRFL PELAS ALGVS VDWLL· · ·
NGTSD SNVR

aIF2β 1K8B
Two helices and a EILIE GNRTI IRNFR ELAKA VNRDE EFFAK· · ·

four stranded β-sheet YLLKE TGSAG NLEGG RLILQ RR

MBH12 1K43 β-hairpin RGKWT YNGIT YEGR

β-hairpin VVVVVDPGVVV VV

Table 2.5: Structure and amino acid sequence of all proteins studied in this chapter.

amino acid sequence is given in Table 2.5. A similar protocol was followed by Favrin et al.
[FIW02] in order to study a different three-helix bundle (PDB: 1BDD).

A first attempt in tuning parameters consisted of simulating proteins starting from their
native structure. Testing for stability is a rapid means to constrain parameter space, but
not sufficiently so as to actually determine their values. This is consistent with the picture
of a deep funnel-like free energy landscape [BOSW95]: the free energy minimum of a native
state is sufficiently deep compared to unfolded states that a folded protein is very stable
against force field parameter variations. Further tuning was therefore mainly achieved by
studying folding events using a set of trial runs with different parameters. Observation
of three-dimensional structures with VMD [HDS96] was well suited to characterize sim-
ulations. The software was also used to render protein images throughout the present
thesis.

Folding was studied in the following way: the only input into our simulations was the
sequence of amino acids and the temperature. The initial conformation (determined by the
collection of dihedral angles φ and ψ) was chosen randomly, and the integration started by
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Figure 2.6: RMSD of the CG protein α3D (full line) and S-824 (dashed line) com-
pared with experimentally resolved structures. Both simulations were run
at T = 1 E/kB. Reprinted with permission from Bereau, T. and Deserno,
M. J. Chem. Phys. 130 (2009), 235106 [BD09]. Copyright 2009, American
Institute of Physics.

warming up non-bonded interactions to relax high energy steric clashes. We used parallel
tempering for all simulations to avoid kinetic traps. Structural observables were measured
at kBT = 1 E , the temperature at which the force field was tuned. Simulations were
set at eight different temperatures: kBT/E ∈ {1.0, 1.1, . . ., 1.4, 1.6, 1.9, 2.2}). MC swaps
between different temperatures were attempted every 10 τ , the average acceptance rate was
around 10%. We tested convergence to a global minimum by checking that different initial
conditions consistently equilibrate to the same structure. A combination of thermodynamic
and kinetic studies (see below) will allow us to show two important features. First, the
temperature used for parameter tuning, kBT = 1 E , is below the folding temperature Tf

of α3D, above which the unfolded conformation becomes the most stable state. Second,
kBT = 1 E is above the glass transition temperature Tg, below which the energy landscape
becomes very rugged and creates severe kinetic traps. It was indeed possible to observe
folding events in conventional (i.e., not using parallel tempering) simulations within this
range of temperature.

Quantitative comparison between the CG and the experimental structures can be made
by calculating the root-mean-square-deviation (RMSD) between corresponding α-carbons
on the two chains (after optimal mutual alignment). Figure 2.6 reports the RMSD of a
protein in the lowest (kBT = 1 E) replica of a parallel tempering MD run as a function of
time, using the RMSD Trajectory Tool within the VMD package [HDS96]. These results
were obtained with the parameters reported in Table 2.1, Table 2.2, and Table 2.3. The
average error between the equilibrated simulation and the NMR structure is around 4 Å,
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(a) (b)

Figure 2.7: Equilibrated structures of three-helix bundle α3D (a) and four-helix bundle S-
824 (b) sampled at T = 1 E/kB. Superposition of simulated structure (opaque)
with experimental data (transparent) is displayed. The STRIDE algorithm
[FA95] was used for secondary structure assignment (thick ribbons represent α-
helices on the figure). Reprinted with permission from Bereau, T. and Deserno,
M. J. Chem. Phys. 130 (2009), 235106 [BD09]. Copyright 2009, American
Institute of Physics.

after about 100 000 τ and at kBT/E = 1, the temperature at which the native conformation
represents the free energy minimum. A superposition of the simulated structure with the
experimental one is shown in Figure 2.7. The STRIDE algorithm [FA95] was used to
assign secondary structure. Overall the conformation is very well reproduced considering
that we have a resolution of only 4 beads per amino acid, and that no a priori knowledge
of secondary/tertiary structure was provided to the force field. Helix regions had formed
at the right place, and amino acids were arranged in order to bury hydrophobic beads
between the three helices, away from the implicit solvent.

To characterize the stability of this protein, we also performed thermodynamic calcu-
lations using WHAM and parallel tempering at the temperatures kBT/E ∈ {0.8, 0.9, . . .,
1.4, 1.6, 1.9, 2.2}. By reconstructing the density of states, we can estimate the folding
temperature kBTf ≃ 1.2 E , the point at which the folded and unfolded states are equally
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Figure 2.8: Free energy profile as a function of nativeness order parameter Q
(Equation 2.16) below (T = 1.1 E/kB), at, and above (T = 1.3 E/kB) the folding
temperature Tf = 1.2 E/kB for α3D. Reprinted with permission from Bereau,
T. and Deserno, M. J. Chem. Phys. 130 (2009), 235106 [BD09]. Copyright
2009, American Institute of Physics.

populated. This gives a measure of the stability of the system: below Tf the native state is
the most likely conformation. In Figure 2.8, we plot the free energy below, at, and above
the folding temperature as a function of the nativeness order parameter Q as introduced
by Takada et al. [TLSW99]. It measures the distance rij between pairs i and j of Cα beads
between the NMR data and CG simulations:

Q =

〈
exp

[
− 1

9σ2

(
rNMR
ij − rCG

ij

)2
]〉

ij

(2.16)

where the average goes over all pairs ij and σ = 1 Å. The folded conformation lies in the
basin Q & 0.6 whereas all unfolded conformations (in which not all three helices have
properly formed) occur for Q . 0.5. It should be noted that all three curves in the graph
have been calculated by using the same reference point, meaning that the vertical shift
between curves accounts for the free energy difference in going from one temperature to
another. The folding temperature is close to 1.2 E/kB. To make sure the model is also
able to sample this important part of phase space in conventional simulations, we provide
a stability run at the folding temperature starting from a random conformation. It can be
seen that the system repeatedly switches between folded and unfolded states and roughly
spends as much time in either one (Figure 2.9).

In 13 out of 15 independent parallel tempering simulations the protein folded to the
native state at a temperature T = 1 E/kB. However, the folding time varied substantially
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Figure 2.9: Conventional (i.e., not using parallel tempering) simulation of α3D at
T = 1.2 E /kB. The nativity parameter Q is plotted against time. The
protein alternates between folded (Q & 0.6) and unfolded conformations
(Q . 0.5). Reprinted with permission from Bereau, T. and Deserno,
M. J. Chem. Phys. 130 (2009), 235106 [BD09]. Copyright 2009, American
Institute of Physics.

between different simulations. The kinetics of folding of this protein was studied by running
conventional simulations at various temperatures. For each temperature kBT/E ∈ {0.7, 0.8,
0.9, 1.0, 1.1, 1.2} we ran 10 simulations and measured the average time it took to fold the
protein to its native conformation, if it ever did in the time scale of the simulation (2×106 τ).
The results are reported in Figure 2.10. Temperatures 0.7 E/kB and 0.8 E/kB did not yield
a single folding event, suggesting the onset of glassy behavior [SO94, BOSW95]. The glass
transition temperature Tg can be estimated following a simple pragmatic scheme suggested
by Socci and Onuchic [SO94]: it is the temperature where the mean folding time is the
average of the minimum folding time τmin (lowest point in the graph) and the largest
time scale one is willing to invest in the simulation, τmax (highest boundary in the graph):
τg = (τmin + τmax)/2. This average time is plotted as a horizontal line in the graph. One
can then estimate what temperature this folding time corresponds to (Figure 2.10). In
our case, we can safely assume that Tg < 0.9 E/kB, meaning that the protein does not
experience glassy behavior when simulating at our reference temperature T = 1 E/kB.
Moreover, combining results from thermodynamic calculations and kinetic studies shows
that there is a range of temperatures Tg < T < Tf in which the system is not experiencing
glassy behavior, but is still “cold” enough such that the native state is the most stable
conformation.

Irbäck et al. [ISW00] as well as Takada et al. [TLSW99] have reported a degeneracy
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Figure 2.10: Kinetic studies of the α3D three-helix bundle CG protein. The average folding
time tf is plotted against temperature. For temperatures ranging from T =
0.7 E/kB to T = 1.2 E/kB, about 10 simulations were run and we measured
the first passage time to the native state. The line represents the average
between the minimum folding time and the time scale of the simulation. This
can be used to estimate the glass transition temperature (see text). Reprinted
with permission from Bereau, T. and Deserno, M. J. Chem. Phys. 130 (2009),
235106 [BD09]. Copyright 2009, American Institute of Physics.

in the CG structures of their helix bundles: there are two ways three helices can pack
(see Figure 2.11), and their models were not able to discriminate the two different tertiary
structures. NMR experiments on α3D found a ratio between clockwise and counterclock-
wise topologies of several percents, leading to a free energy difference of a few kBT at
room temperature.10 From 15 independent simulations we ran, one of them did not fold
within 300 000 τ , and 13 converged to the NMR structure—a counterclockwise topology
(Figure 2.11 (a)); only one had the other topology (illustrated in Figure 2.11 (b)). While
it is encouraging to see that our model is able to distinguish these topologies, it is not
guaranteed that this will work equally well for other proteins.

10W. F. DeGrado, personal communication.
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1 2 1 2

3

3

a) b)

Figure 2.11: Schematic figure of the two possible topologies in forming a three-helix bundle.
The native fold of protein α3D corresponds to a counterclockwise topology (a),
that of GS-α3W is clockwise (b). Reprinted with permission from Bereau,
T. and Deserno, M. J. Chem. Phys. 130 (2009), 235106 [BD09]. Copyright
2009, American Institute of Physics.

2.5 Applications and tests

2.5.1 Folding

All simulations mentioned from this point onward have not been part of the parameter
tuning training set. They come out as independent checks and features of the force field.
Thermodynamic and kinetic studies were not performed for the different proteins of this
section. Here, we study the equilibrium conformations of various sequences at a temper-
ature of kBT/E = 1, which lies between Tg and Tf for our reference protein, α3D. In this
respect, we expect to avoid glassy behavior for similarly complex proteins whose native
state is folded.

In order to test the folding features of the model, we first studied another de novo
three-helix bundle, GS-α3W. Even though the fold is very similar to α3D, it has 67 amino
acids and a completely different primary sequence. Also, the native structure, obtained
from NMR [DTF+02], has the opposite topology (clockwise) compared to α3D. From 10
independent parallel tempering runs, 300 000 τ long each, one of them did not fold within
this amount of time (helices formed, but did not arrange properly). Out of the 9 remaining
structures, 5 folded consistently to the native clockwise topology (Figure 2.11 (b)), and 4
to the other one (Figure 2.11 (a)). It should be noted that this sequence had been designed
such that its native structure leads to favorable salt-bridge interactions [DTF+02]. As we
do not incorporate electrostatics (and thus salt bridges) explicitly, we expect the CG model
to have difficulties in discriminating between the two tertiary structures.

In order to further probe the folding features of different α-helical rich folds, we studied
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a four-helix bundle, S-824, consisting of 102 amino acids [WKF+03]. Even though the
secondary structure is overall rather similar to the abovementioned three-helix bundle,
the tertiary structure and amino acid sequence is completely different. Again, the refer-
ence structure is taken from experimental data [WKF+03]. From 6 independent parallel
tempering runs, each 600 000 τ long, our force field successfully folded the protein into a
four-helix bundle for every simulation except one, which did not have time to properly
align its fourth helix. The RMSD is shown in Figure 2.6 for a simulation which converged
to the right topology. As can be seen, the RMSD went below 4 Å, which, again, is very
satisfactory considering the level of resolution and the complete absence of structure bias
in the force field. It should be noted that what appears as large fluctuations on the graph
are actually frequent MC swaps between replicas of the parallel tempering ladder. Fairly
different structures from neighboring replicas are energetically comparable (which is the
reason why they swap temperatures11), as can be seen on the RMSD plot. Just as in the
three-helix bundle case, this protein can fold into several different topologies. Out of the
five simulations which converged to a four-helix bundle tertiary structure, two of them
represented the NMR topology. RMSD values for other topologies ranged between 5 Å and
8 Å. A snapshot of the equilibrated structure is shown in Figure 2.7 (b).

Also a second de novo four-helix bundle was used to test the force field. Even though
the tertiary structure resembles the abovementioned S-824, the amino acid sequence of
S-836 is completely independent (though it also has 102 amino acids) and the topology
is different. Out of 3 independent runs, all of them successfully folded in a four-helix
bundle structure within 600 000 τ , by comparing qualitatively the CG protein with the
NMR structure [GKBH08]. However, none of them converged to the right topology.

Our model has proven very efficient in finding the equilibrium conformation of various
helical structures, up to small deviations, and independently of their tertiary structure (i.e.,
number of helices) or sequence of amino acids. The fact that none of these proteins were
part of the parameter tuning strongly indicates that our CG model captures important
aspects of protein physics.

The limits of the model were reached when simulating globular proteins, such as R1-69
[MSA+89], and aIF2β [CH02]. The chain collapsed into a molten globule, but the arrange-
ment of secondary structures (collections of α-helices and β-sheets) was not accurately
reproduced, leading to an incorrect tertiary structure. This suggests a missing sufficiently
deep free energy minimum, most likely due to the limitations of the CG model in terms
of cooperativity and realistic packing (recall that all side chains have the same bead size).
The RMSD values did not drop below 10 Å.

Stabilizing a single β-hairpin in small proteins is difficult because this relies on very weak

11Recall the parallel tempering update rule between replicas i and j:

p = min

(
1,

exp (−βiEj − βjEi)

exp (−βiEi − βjEj)

)
= min

(
1, e(Ei−Ej)(βi−βj)

)
,

where β−1
i = kBTi [SW86, NB99].
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Figure 2.12: Specific heat of 15 GNNQQNY peptides in a cubic box of size 55 Å. The
peak around T = 0.95 E/kB separates a low-temperature phase, rich in
high-β content aggregates, from a high temperature phase where no ag-
gregates form. Reprinted with permission from Bereau, T. and Deserno,
M. J. Chem. Phys. 130 (2009), 235106 [BD09]. Copyright 2009, American
Institute of Physics.

interactions. We simulated the de novo MBH12 peptide for 300 000 τ . It consists of 14
residues and forms a β-hairpin in water [PdlPL+02]. Our model is not able to stabilize it.
The simulation shows a high tendency to form an α-helix, where 40 % of all conformations
are helical, whereas only 2 % are extended (β-sheet like). However, the CG model can suc-
cessfully fold a designed β-hairpin, sequence V5

DPGV5, which contains a d-proline in order
to sterically favor hairpin formation [Gel98]. This peptide has been recently characterized
using atomistic [FAC00] and structure-based coarse-grained simulations [TZV08].

2.5.2 Aggregation

Gsponer et al. [GHC03] recently reported atomistic simulations of small aggregation events
in water. Heptapeptides GNNQQNY from the yeast prion protein Sup35 were shown to
form β-sheet aggregates. These authors did a quantitative analysis of the number of 2-
and 3-aggregates in the system at room temperature.

We studied the abovementioned scenario by simulating fifteen identical peptides in a box
of size 55 Å,12 without matching density with the atomistic run. Indeed, while Gsponer
et al. simulated their system in a restricted sphere of 150 Å diameter and applying forces
to constrain the system in the center, we set periodic boundary conditions in a cubic

12Ref. [BD09] incorrectly states a box of size 40 Å.
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(a) (b)

Figure 2.13: Snapshot of representative conformations at: (a) T = 0.8 E/kB where peptides
aggregate into a condensed phase and (b) T = 1.0 E/kB which mostly samples
disordered monomers. These two temperatures are located on both sides of
the system’s transition, as shown in Figure 2.12. Reprinted with permission
from Bereau, T. and Deserno, M. J. Chem. Phys. 130 (2009), 235106 [BD09].
Copyright 2009, American Institute of Physics.

box. Even though this represents a rather dense system in order to drive aggregation,
we checked that similar structures were sampled when simulating more dilute systems.
Initial configurations were chosen randomly, and we ran parallel tempering simulations at
temperatures kBT/E ∈ {0.7, 0.8, 0.85, 0.9, 0.95, 1.0, 1.1, 1.2} for 500 000 τ each. We used
WHAM to calculate the specific heat of the system (Figure 2.12). A clear peak occurs
between lower temperatures, with formation of long-range fibrillar structures (Figure 2.13
(a)), and higher temperatures where the system mostly samples random coil monomers
(Figure 2.13 (b)). The temperature dependence of the system’s β-propensity is illustrated
in Figure 2.14, where the free energy was calculated as a function of the ratio of residues
in a β conformation for temperatures kBT = {0.9, 1.0, 1.1} E . The results show that while
the lowest temperature shows a free energy minimum at a non-zero ratio (i.e., ≈ 17%), the
two temperatures above the transition exhibit a monotonically increasing curve, indicating
that the formation of β structures (i.e., extended, β-sheets) is unfavorable. The data points
are horizontally shifted due to the binning of the order parameter.

Table 2.6 shows a detailed analysis of the amount of β propensity sampled from the
different temperature replicas. The top-most part of the table compares the average number
of residues which exhibited antiparallel and parallel sheet conformations. The column on
the right shows the average number of residues in a β-conformation for each temperature.
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Figure 2.14: Free energy as a function of the (normalized) amount of β content for 15
GNNQQNY peptides at temperatures T = {0.9, 1.0, 1.1} E/kB. All curves
were shifted vertically such that F = 0 corresponds to the lowest free energy.
The horizontal shift (i.e., the first data points are away from zero) is due to
the binning of the order parameter upon calculating F .

There is a sharp drop in β-propensity between T = 0.95 E/kB and T = 1.0 E/kB, which
corresponds to the specific heat peak position (Figure 2.12). At lower temperatures, where
aggregation occurs, we mostly observe parallel sheets over antiparallel.13 Interestingly,
this is in agreement with the study of Gsponer et al. and could be due to the hydrophobic
interactions of the C-terminal tyrosine. To test this, we performed single point mutations
in order to create a symmetric sequence. In this case parallel β-sheets also turned out to
be more stable than antiparallel ones, which is unexpected since antiparallel β-sheets are
generally believed to be lower in free energy [FP02]. One possible explanation is that the
model is lacking electrostatic interactions at the N- and C-termini of the chains, which will
favor antiparallel sheets, as the two ends have opposite charges.

These parallel GNNQQNY β-sheets also have the tendency to align within a plane, with
the C-termini facing each other. This evidently results from the attraction between the
C-terminal tyrosines, the most hydrophobic amino acid in this peptide.

To show that their force field was not biased towards aggregation, the authors also simu-
lated a water-soluble control peptide SQNGNQQRG and found a difference in the amount
of β-sheets formed. We compared the phase behavior of GNNQQNY and SQNGNQQRG
by using WHAM on both sequences, but did not find statistically significant differences

13Note that β-propensity at T = 0.7 E/kB is lower than around the transition. This is most-likely a
sampling artifact, suggesting that this replica hasn’t quite reached equilibrium. Lower-temperature replicas
produce larger autocorrelations and thus require longer simulation times.
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Aggregation amount
T [E/kB] antiparallel parallel total
0.7 0.01 0.15 0.16
0.8 0.03 0.14 0.17
0.85 0.01 0.19 0.20
0.9 0.01 0.19 0.20
0.95 0.03 0.16 0.19
1.0 0.01 0.06 0.07
1.1 0.00 0.01 0.01
1.2 0.00 0.00 0.00

Table 2.6: Amount of aggregation sampled for 15 GNNQQNY at different temperatures.
Percentage of antiparallel and parallel sheet formation, as well as the sum of
both contributions.

over the studied temperature range. This suggests that some of the details necessary to
distinguish the thermodynamics of these two peptides are too subtle for our force field
to represent. Since the simulation temperature of Gsponer et al. in our case maps to
T = 1 E/kB, which is where we essentially find the phase transition (Figure 2.12), effects
only captured by the atomistic force field can indeed be expected to lead to substantial
differences. Previous studies have shown how differences in CG force field parameters affect
structure, β-sheet propensity, and aggregation behavior of different sequences [BS07].

All of these aggregation results were obtained using the same force field with no addi-
tional parameter adjustment. Other CG models have previously demonstrated aggregation
events on a larger scale [PDU+04, FOYHG07]. Here our goal was to show that we can
study aggregation events using a force field that is tuned to reproduce simple folding fea-
tures without biasing secondary or tertiary structure. This is important when looking at
spontaneous aggregation or misfolding pathways, where one aims to reproduce general be-
havior without constraining the protein’s structure towards a certain state that might not
even be known or well-defined.

2.6 Summary

We have presented a new CG implicit solvent peptide model. Its intermediate resolution of
four beads per amino acid permits accurate sampling of local conformations and thus sec-
ondary structure. Following cautious parameter tuning, the CG model is able to fold simple
proteins such as helix bundles. Folding of a three-helix bundle was used to incorporate
large-scale aspects of the force field, whereas the successful folding event of other helical
bundles provided independent checks of reliability. Thermodynamic and kinetic studies
of the three-helix bundle were carried out to verify that the folding temperature Tf was
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2.6 Summary

above the glass transition temperature Tg for this protein. The model was systematically
compared to NMR data in order to optimize parameter tuning and precisely determine
how much fine-scale information this CG model still contains. Of course, our model is not
intended to compete with atomistic simulations, which is not the point of CG models; yet,
carefully balancing several key contributions to the force field is a prerequisite to perform
meaningful studies involving secondary and tertiary structure formation. Globular shaped
proteins have proven more difficult to stabilize, presumably because accurate packing and
strong cooperativity are not well enough captured. We also observe aggregation events of
small β-sheets without retuning the force field. A realistic α/β balance, coupled with basic
folding features, make the CG model very suitable for the large-scale and long-term regime
that many biological processes require. Indeed, a force field that is not biased toward the
protein’s native conformation will likely give rise to insightful thermodynamic and kinetic
studies when the structure is not known, not well defined, strongly perturbed from the
native state, or adjusts during aggregation events.
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3 Folding Kinetics of Two Model
Peptides: α-helix and β-hairpin

This chapter attempts to evaluate the speedup factor ft involved in the coarse-
grained dynamics of the model. The folding kinetics of two model peptides—an
α-helix and a β-hairpin—are calculated and compared to experimental estimates.

Coarse-graining is an attempt to reproduce key properties of a system at a reduced
level of resolution. As mentioned in subsection 1.2.3, matching static properties alone
provide no constraint on the dynamics of a coarse-grained system. Also, the reduction of
molecular friction naturally leads to faster dynamics. One thus often resorts to estimating
how much faster the model system is compared to reality. Assuming all dynamic processes
were to happen homogeneously faster it should be possible to estimate the value of the
speedup factor ft that links coarse-graining with the real dynamics. Measuring the same
dynamic process both numerically and experimentally would yield ft. Examples include
lateral diffusion of lipids [MKP+08] and folding simulations of peptides [TZV08]. While
one cannot generally expect this assumption to hold, it offers, if nothing else, a rough
estimate of the coarse-grained time-scale.

In the following we will evaluate the value of ft by monitoring the folding kinetics of
two model peptides: the α-helix forming (AAQAA)3 and the β-hairpin V5

DPGV5 (see
Figure 3.1). While only one peptide is necessary for the evaluation of the speedup factor,
the second peptide provides a check for the transferability of ft since these two dynamic
processes are independent.

(AAQAA)3 has been studied extensively, both experimentally [SYSB91, SDS94, ZJM+05]
and computationally [FAC00, ZJM+05, ZTIV07, TZV08, CDL+09], and was shown to
strongly stabilize a helical conformation. V5

DPGV5, composed of a d-proline followed by a
glycine residue, was designed to enhance the conformational stability of β-hairpins as the
geometry of d-Pro matches the right-handed twist of a β-sheet structure [KAB96, Gel98].
It can therefore reduce the entropic cost associated with turn formation—the rate limiting
event in β-hairpin folding—and thus stabilize the folded state by increasing the folding
rate [XPG06]. The hydrophobic tail is composed of valine residues.

3.1 Thermodynamics

In order to characterize the folding kinetics of a peptide, one first needs a suitable order
parameter which describes the evolution of the system (essentially answering the question:
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3 Folding Kinetics of Two Model Peptides: α-helix and β-hairpin

(a)

(b)

Figure 3.1: CG snapshots of the folded conformations of (a) α-helix (AAQAA)3 sampled
at T = 1.0 E/kB and (b) β-hairpin VD

5 PGV5 sampled at T = 0.7 E/kB. Labels
indicate amino acid names with their sequence position. The larger beads rep-
resent side chains and the light dashed lines show hydrogen bonds. Rendering
was done with VMD [HDS96].

“is it folded?”). Following a similar (implicit-solvent atomistic) study of the same peptides
[FAC00], we use the Cα root-mean-square deviation (RMSD) relative to the sampled coarse-
grained structure with lowest potential energy (after optimal mutual alignment).

Thermodynamic information of the two peptides was obtained by combining parallel tem-
pering [SW86] with the weighted histogram analysis method (WHAM) [KRB+95, KRB+92,
FS88] (see Appendix A). The free energy as a function of RMSD was calculated according
to Equation A.17 on page 122. Simulations were run at temperatures kBT/E ∈ {0.7, 0.8,
. . ., 1.4} for both (AAQAA)3 and V5

DPGV5 with a total simulation time per replica of
5× 106 τ .

The results for the α-helix are shown in Figure 3.2 (a) for temperatures T = {1.0, 1.2,
1.3} E/kB. All three curves have been calculated using the same reference point, such that
the vertical shift between curves accounts for the free energy difference in going from one
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3.1 Thermodynamics
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F
re

e
en

er
gy

F
[E

]

43.532.521.510.50

10

8

6

4

2

0

(a) (b)

Figure 3.2: Free energy as a function of the RMSD from the sampled structure with lowest
potential energy for (a) (AAQAA)3 and (b) V5

DPGV5. The three curves rep-
resent the free energy at temperature T = {1.0, 1.2, 1.3} E/kB and T = {0.8,
1.1, 1.3} E/kB, respectively. The vertical line indicates a 1 Å RMSD used as
the folding threshold in section 3.2.

temperature to another. From analyzing the evolution of the free energy as a function of
temperature, it is straightforward to identify folded conformations (corresponding to lower
values of the RMSD ≈ 1 Å) from the unfolded ensemble (RMSD ≈ 5 − 6 Å). Note that
kBT = 1.2 E samples both ensembles with roughly equal free energies but does not exhibit
any statistically significant free energy barrier in the middle.1

The corresponding results for the β-hairpin are shown in Figure 3.2 (b) for temperatures
T = {0.8, 1.1, 1.3} E/kB. Compared to (AAQAA)3, both the variations in RMSD and free
energy difference are much lower, indicating that

• The change in chain extension (between compact and unfolded) is reduced for the
hairpin V5

DPGV5.

• Energetics between folded and unfolded ensembles are comparable.

The second point is best illustrated by the absence of any peak in the canonical specific heat
curve (data not shown). Still, the free energy curves in Figure 3.2 (b) clearly distinguish
the folded (≈ 1 Å) from the unfolded ensembles (≈ 2−3 Å). The presence of a rather large
free energy barrier should be interpreted with care.1

1The transition temperature Tc cannot be identified uniquely in the canonical ensemble for finite-size
systems. Different observables will yield different values of Tc. Likewise, the presence of a free energy
barrier is specific to the order parameter used in finite-size systems. See chapter 4 for details.

51
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Figure 3.3: Cumulative proportion of folded peptides as a function of time for (a)
(AAQAA)3 and (b) V5

DPGV5 at different temperatures. Right boundaries
correspond to the maximum simulation time.

3.2 Folding kinetics

Here, we evaluate folding times at a given temperature by measuring the average time taken
to fold each peptide from a random conformation to the folded state. Various temperatures
were considered. Following Ferrara et al., we used the Cα-RMSD to follow the evolution of
each system and set the folding threshold to 1.0 Å [FAC00]. As shown in Figure 3.2, such
a value is well within the folded state of each peptide. Each folding time was evaluated
from 800 independent simulations. Random conformations were first equilibrated for 2 τ
to avoid steric clashes. Simulations were then run for up to 2× 106 τ , or until the RMSD
had reached the folding threshold.

The (cumulative) distribution functions of folding times are shown in Figure 3.3. The
right boundaries correspond to the maximum simulation time. All simulations folded
within the maximum simulation time, avoiding artifacts when calculating averages. The
shoulder in the distribution function of (AAQAA)3 at kBT = 0.95 E (around 95 %) is
not due to statistical noise: an identical set of 800 simulations was run under the same
conditions and yielded a nearly-identical curve (data not shown). Its origin is unclear.

The average2 folding times extracted from the cumulative distribution functions shown
in Figure 3.3 are presented in Table 3.1. The kinetics of (AAQAA)3 yield an average fold-
ing time in the range 5 000 − 7 000 τ at kBT ≈ E . The results indicate the presence of
a minimum folding time between kBT = 0.95 E and kBT = 1.12 E . The thermodynamic
analysis of Figure 3.2 suggest that this range of temperature is somewhat below the fold-
ing transition of the peptide, indicating that folding is most efficient in the presence of

2The median may be more appropriate when the cumulative distribution functions of folding times
show significant long-time tails.

52



3.3 Time-scale mapping

Average folding time [τ ]
T [E/kB] (AAQAA)3 V5

DPGV5

0.8 140 000
0.95 7 900 92 000
1.0 19 000
1.05 5 200
1.12 6 400

Table 3.1: Average folding times for (AAQAA)3 and V5
DPGV5 at different temperatures.

weaker fluctuations. This illustrates the predominance of enthalpic contributions—mainly
through hydrogen bonds. Interestingly, Kaya and Chan suggested that kinetic two-state
cooperativity can be characterized by larger Tmin/Tf ratios, where Tmin is the tempera-
ture of minimum folding time and Tf the folding temperature [KC00b]. We will show in
chapter 4 that (AAQAA)3 indeed shows strong features of two-state cooperativity from
accurate calculations of its density of states.

V5
DPGV5 shows a much longer folding time scale: 19 000 τ at kBT = E and up to

140 000 τ at kBT = 0.8 E . The increasing folding time upon lowering temperature is evident:
even though weakened thermal fluctuations stabilize the folded ensemble, an unfolded
chain is more likely to experience kinetic traps due to the ruggedness of the free-energy
landscape. This forms the basis of the statistical mechanics of glasses in proteins and
peptides [SO94, BOSW95]. The fact that the hairpin seems to be more sensitive to a
decrease in temperature illustrates the importance of thermal fluctuations upon folding:
entropic contributions are predominant in the hydrophobic collapse of the Val residues.
The turn region, on the other hand, is sterically constrained.

3.3 Time-scale mapping

In light of the results obtained in the last section, we can now evaluate the speedup factor
ft that links the coarse-grained simulations with the “true” dynamics (e.g., as measured
experimentally). Despite the existence of experimental studies on (AAQAA)3 [SYSB91,
SDS94], there is little data on the kinetics of folding. We will therefore estimate the average
folding time of this peptide from similar α-helix forming sequences with comparable chain
length. Experimental studies have shown that such peptides fold in 100− 500 ns at room
temperature [WZG+04, HGZ+02, EMT+98, XPG06]. The approximate evaluation of the
experimental time scale will only allow us to roughly evaluate the speedup factor, i.e.,
characterize its order of magnitude. Assuming coarse-grained simulations at kBT ≈ E
describes the room-temperature behavior of (AAQAA)3, the speedup factor is evaluated
by simply dividing experimental by coarse-grained folding times ft = treal/tcg. Recall
from subsection 2.1.3 on page 17 that the coarse-grained unit of time was evaluated as
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3 Folding Kinetics of Two Model Peptides: α-helix and β-hairpin

τ ∼ 0.1 ps = 100 fs. This yields

ft =
treal
tcg
∼ 500 ns

5 000× 100 fs
= 103. (3.1)

Equation 3.1 provides an estimate of the speedup factor from folding kinetics of the
α-helix alone. We can now compare this value with folding time scales of β-hairpin fold-
ing. While, again, no experimental kinetic study is available for the sequence V5

DPGV5,
it is generally believed that most β-hairpins fold at least 10 times slower than helices
(e.g., [XPG06] and references therein). The same factor was reported from implicit-solvent
atomistic simulations of (AAQAA)3 and V5

DPGV5 [FAC00].3 Although it is difficult to
calibrate the coarse-grained temperature in order to reproduce the room-temperature be-
havior of V5

DPGV5, the set of average folding times in Table 3.1 suggest a ratio of folding
times thairpin/thelix in the range 5− 20. While approximate, the results are consistent with
a ratio of 10 between helix and hairpin folding times, suggesting an overall speedup factor
ft = 103. How much can we trust these results? Zhou et al. showed that their coarse-
grained model folded V5

DPGV5 faster than a 15-residue polyalanine [ZTIV07]. This could
represent a genuine characteristic of their model, but might also reflect an unfortunate
choice in the folding threshold. There is no reason to believe that the threshold selected
here is any more accurate than theirs, and its effect on the overall kinetics is unclear.

3Even though the absolute time scales of folding were too fast due to the lack of solvent friction, the
ratio between helix and hairpin yielded a value of 10.
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4 Protein Folding Cooperativity from a
Microcanonical Perspective

Two-state protein folding cooperativity, defined by a depletion of states lying ener-
getically between folded and unfolded conformations, is unambiguously identified
using accurate density of states calculations. The link between thermodynamics
and structure highlights the interplay between secondary structure formation and
the concomitant loss of non-native tertiary contacts in helical peptides.

4.1 Protein folding cooperativity

Two-state protein folding is defined by a single free-energy barrier between folded and un-
folded conformations at the transition temperature Tc, whereas downhill folders do not ex-
hibit folding barriers—they rather show a significant population of intermediates [DŠK98].
The determination of this property conveys important information on both the thermody-
namics as well as the kinetic pathways of proteins [BOSW95, Jac98]. Folding cooperativity
is characterized by the nature of the underlying finite-size transition: two-state proteins
correspond to a finite-size first-order transition (with an associated free energy barrier and
nonzero latent heat), whereas downhill folders exhibit a continuous transition (i.e., no bar-
rier) [Pri79, Pri82, CBD95]. The existence of such a free energy barrier implies a depletion
of the population of intermediate conformations.1 This characterization, based on the en-
ergetics of the system, is often difficult to extract—especially experimentally. Fortunately,
various proxies have been developed to characterize protein folding cooperativity [Jac98]:

• The characterization of two-state folding from sharp transitions in order parameters
(e.g., circular dichroism signal at 222 nm as a measure of helicity [HB94]). This,
however, is seldom reliable because both two-state and downhill folders may display
strong sigmoidal features [CBD95].

• A widely used test for a two-state transition is a calorimetric criterion which probes
features in the canonical specific heat curve [Pti95, KC00b]. The calorimetric crite-
rion attempts to extract the nature of the thermodynamic transition from the “sharp-
ness” of the canonical specific heat curve (see Technical point 4.1 for a derivation of

1More accurately, it gives rise to a region where the number of states grows slower than eE/kBTc , where
Tc is the transition temperature.

55



4 Protein Folding Cooperativity from a Microcanonical Perspective

the calorimetric criterion). However, this criterion does not hold as a sufficient con-
dition to identify two-state transitions [ZHK99] and does not offer a clear distinction
between weakly two-state and downhill folders.

• So-called “chevron plots” characterize the relationship between folding/unfolding
rates and concentration of chemical denaturant. Two-state folders feature two linear
arms (thus the term “chevron”) that intersect when folded and unfolded conforma-
tions are equally probable. The folding region (located between no denaturant—
native conditions—and chevron mid-point) will show a negative slope: the more
denaturant is added, the slower proteins fold. Conversely, the unfolding region (de-
naturant higher than the chevron mid-point) will show a positive slope: the more
denaturant is added, the faster proteins unfold. Downhill folding proteins exhibit ad-
ditional “rollovers” in the folding region which correspond to a slow-down in folding
time in near-native conditions [FP02]. Kaya and Chan showed that such rollovers
are due to slow, kinetically trapped intermediates—representative of downhill (i.e.,
non-two-state) folders [KC03]. This method thus probes the kinetics rather than the
thermodynamics of protein folding.

• Förster resonance energy transfer (FRET) measurements allow to monitor the dis-
tribution of end-to-end distances in proteins [Lak99]. By studying the change in this
distribution upon denaturation (e.g., increase in chemical denaturant), one may dis-
tinguish two-state from downhill folders: two-state distributions will show a clear dip
between folded and unfolded distribution whereas downhill folders will show a shift
in populations from folded to intermediates to unfolded [SE08]. FRET has shown
extremely valuable in characterizing protein folding cooperativity (i.e., distinguishing
between two-state and downhill folding), provided the relaxation rate between native
and denatured ensembles is smaller than the single-molecule detection rate of the
apparatus [HSS+07].

From a simulation point of view, energy distributions can, in principle,2 be sampled. The
following work is based on an accurate determination of the density of states to unambigu-
ously characterize the nature of the finite-size transition.

4.2 Microcanonical analysis

It is possible to determine the density of states in a standard canonical computer simulation
at temperature T ∗ of interest: sample the probability density p(E) of finding an energy
E. The density of states Ω(E) is then proportional to p(E) eE/kBT ∗

, and hence the entropy
is (up to a constant) given by S(E) = kB ln Ω(E) = const. + kB ln p(E) + E/T ∗. One
may proceed to analyze the system microcanonically, i.e., to study the thermodynamics of
S(E), in the neighborhood of 〈E〉T ∗ . The advantage is that we essentially directly analyze

2If one waits long enough.
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4.2 Microcanonical analysis

Technical Point 4.1 Derivation of the calorimetric ratio
This derivation follows Ptitsyn [Pti95], and Kaya and Chan [KC00b]. The calorimetric
criterion consists of assuming two-state folding: the entire protein folds as a whole. En-
ergetically, this criterion consists in assuming that the van ’t Hoff enthalpy ∆HvH, which
corresponds to the enthalpy of a cooperative unit, is equal to the enthalpy measured by
calorimetry, ∆Hcal. A ratio ∆HvH/∆Hcal ≈ 1 quantifies this two-state folding assumption.
These two quantities can simply be measured from calorimetric experiments or simulations.

Standard calorimetric measurements give access to the excess enthalpy from heat capacity
scans

〈∆H〉T = 〈H〉T −HN , (4.1)

where H is the enthalpy of the excess system, HN is the enthalpy of the native state, and
〈·〉T denotes a canonical average at temperature T . It is assumed that the native state is
made of a single conformation with a unique temperature-independent enthalpy HN. The
corresponding specific heat yields

CP =
∂〈∆H〉
∂T

=
〈H2〉T − 〈H〉2T

kBT 2
. (4.2)

The calorimetric enthalpy ∆Hcal corresponds to the excess enthalpy at a sufficiently high
temperature T∞ such that heat denaturation is complete: ∆Hcal = 〈∆H〉T∞

.
The van ’t Hoff enthalpy can be obtained from the van ’t Hoff equation [MS97] associated

with an equilibrium constant K

∆HvH = kBT
2 d lnK

dT
= kBT

2 1

θ(1− θ)
dθ

dT
, (4.3)

where θ(T ) is a suitable, normalized order parameter that describes the evolution of the
system: K = [unfolded]/[folded] = θ/(1 − θ). The van ’t Hoff enthalpy is commonly
evaluated at the mid-point temperature Tmid of the parameter θ, such that θ(Tmid) = 1/2
and

∆HvH = 4kBT
2
mid

dθ

dT

∣∣∣∣
T=Tmid

. (4.4)

The temperature-derivative of θ can easily be computed by assuming that θ(T ) =
〈∆H〉T/∆HvH is a suitable order parameter. The derivative yields: dθ/dT |T=Tmid

=
CP (Tmidpoint)/∆HvH. Inserting this expression into Equation 4.4, we readily obtain

∆HvH = 2T 2
mid

√
kBCP (Tmid) . (4.5)

Dividing Equation 4.5 by the calorimetric enthalpy ∆Hcal and setting Tmid = Tmax (specific
heat peak) yields the calorimetric ratio κ2 = 2T 2

max

√
kBCP (Tmax)/∆Hcal described in Kaya

and Chan [KC00b]. Both CP (Tmax) and ∆Hcal can be extracted from the canonical specific
heat curve: the former corresponds to the peak height and the latter to the area under the
curve for which CP (T ) is strongly varying (see [KC00b] for more details).
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4 Protein Folding Cooperativity from a Microcanonical Perspective

the probability density p(E) rather than merely looking at its lowest moments, such as
the specific heat. Such a microcanonical analysis has been applied to a wide variety of
problems, e.g., spin systems [BK92, Gro01, Hül94, Des97, Jan98, HP02, PB05], nuclear
fragmentation [Gro93, KR87], colloids [FMMSV10], gravitating systems [KKK09, PT06],
off-lattice homo- and heteropolymer models [TPB09, CLLL07], and protein folding [HS94,
SR03, JBJ06, JBJ08, HRL08, KKS09, BBD10]. Two remarks are worthwhile:

• If the transition is characterized by a substantial barrier, standard canonical sam-
pling suffers from the usual getting-stuck-problem: during a simulation the system
might not sufficiently many times cross the barrier to equilibrate the two coexisting
ensembles. This, of course, is true and needs to be avoided irrespective of whether
one aims at a canonical or microcanonical analysis. Many ways around this problem
have been proposed, e.g., multicanonical [BN91] or Wang-Landau [WL01] sampling.
Here we use the Weighted Histogram Analysis Method (WHAM) (see Appendix A
and [FS89, KRB+92, BS09]), a minimum variance estimator of Ω(E) that combines
overlapping energy histograms sampled during different canonical simulations, cou-
pled to a parallel tempering scheme [SW86].

• Accurately sampling the whole distribution p(E) over some range of interest requires
better statistics than merely sampling its lowest moments: there’s a price for higher
quality data. But then, a microcanonical analysis taps into this quality, while a
canonical analysis of the much longer simulation run would not significantly im-
prove the observables (see Figure 4.1). Recall that the canonical partition function
Z(T ) =

∫
dE Ω(E)e−E/kBT is the Laplace transform of the density of states Ω(E),

an operation well-known to be (i) strongly smoothing and thus (ii) hard to invert
(an insightful illustration of this issue is presented in Ref. [Cha00]).

From a thermodynamic point of view, a two-state transition is characterized by two co-
existing regions [CBD95]. This corresponds to the finite-size analog of a first-order phase
transition. While it does not qualify as a genuine phase transition in the common termi-
nology (because the free energy is analytical for finite systems), its finite-size equivalent
can be unambiguously characterized by monitoring the entropy S(E) = kB ln Ω(E). Such a
microcanonical analysis, where the energy E is a control parameter, has shown to be more
informative around finite-size first-order transitions compared to its canonical counterpart
[Gro01, Hül94] (the link between microcanonical and canonical descriptions is presented
briefly in Technical point 4.2). In the phase-coexistence region, the entropy will exhibit
a convex intruder due to the depletion of intermediate states. This can best be observed
by defining the quantity ∆S(E) = H(E) − S(E), where H(E) corresponds to the (dou-
ble-)tangent to S(E) in the transition region [JBJ06, JBJ08, Des97]. In a finite system,
the existence of a barrier in ∆S(E) will imply a non-zero microcanonical latent heat ∆Q,
defined by the interval over which S(E) departs from its convex hull, and in turn leads
to a “backbending” effect (akin to a van-der-Waals loop) in the inverse microcanonical
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4.2 Microcanonical analysis
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Figure 4.1: Convergence of microcanonical and canonical descriptions. Inverse temperature
as a function of energy from canonical (T−1

can(〈Ecan〉), blue) and microcanonical
(T−1

µc = ∂S/∂E, red) descriptions, where 〈Ecan〉 is the canonical average en-
ergy. Averages calculated over simulation times t = 20 000 τ (left), t = 30 000 τ
(middle), and t = 120 000 τ (right). In each case, the black curves corre-
spond to canonical and microcanonical averages calculated over a simulation
time t = 106 τ , also reproduced in Figure 4.3 (a). While canonical averages
converge rapidly (the canonical blue and black curves are indistinguishable
at t = 20 000 τ) to a monotonic—and rather uninteresting—curve, the slower
convergence of the corresponding microcanonical curves finally provides a back-
bending effect—a clear indicator of first-order transition (see main text).

temperature T−1
µc (E) = ∂S/∂E (e.g., [Gro01, JBJ06]; experimental evidence of the back-

bending effect was reported for a cluster of 147 sodium atoms [SKH+00]). A non-zero ∆Q
demarcates a transition “region,” whereas a downhill folder (continuous transition) will
only exhibit a transition “point,” where the concavity of S(E) is minimal.

Figure 4.2 illustrates the relationship between different quantities in the microcanonical
and canonical ensembles for a system of size N . Arrow heads denote how quantities can
be determined from others. The first row links the density of states Ω(E) to the partition
function Z(T ) via a Laplace transform. As mentioned above, the inverse operation (i.e.,
from Z(T ) to Ω(E)) is difficult because of the strongly smoothing properties of the Laplace
transform. Taking the logarithm yields the associated potentials: entropy SN(E) and free
energy FN(T ) (second row). Last, the existence of a thermodynamic limit (N →∞) implies
that the intensive quantities sN(e) = S(E/N)/N and fN(T ) = F (T )/N converge toward
limiting functions s∞(e) and f∞(T ), which are then linked via a Legendre transform.

In this chapter, we focus on the link between (i) the nature of the transition (i.e., two-
state vs. downhill), (ii) secondary structure, and (iii) tertiary structure formation for
several helical peptides using a high-resolution, implicit-solvent coarse-grained model. The
results will be interpreted in terms of different frameworks of folding mechanisms, such as
the molten globule model and simple polymer collapse models [DS95, Bal89].
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4 Protein Folding Cooperativity from a Microcanonical Perspective

Technical Point 4.2 Link between microcanonical and canonical descriptions

We will show here that canonical and microcanonical descriptions of a system are equivalent
only in the thermodynamic limit.

Consider a finite-size system made of N particles. The canonical partition function
ZN(β), where β = 1/kBT , is linked to its microcanonical counterpart ΩN(E) (i.e., the
density of states) by a Laplace transform

ZN(β) =

∫

E

dE ΩN(E)e−βE. (4.6)

The microcanonical entropy SN(E) = kB ln[ΩN(E)] and canonical free energy FN(β) =
−β−1 ln[ZN(β)] can be linked together using Equation 4.6

e−βNfN (β) =

∫

E

dE e−β[E−TSN (E)] (4.7a)

=

∫

e

de e−βN [e−TsN (e)], (4.7b)

where e = E/N , fN = FN/N , and sN = SN/N .
Equation 4.7b is equivalent to the integral

IN =

∫
dx eNg(x), (4.8)

for which

lim
N→∞

ln IN
N

= max
x

g(x), (4.9)

assuming g(x) is continuous. In other words, the logarithm of the integral in Equation 4.8
can be approximated by the maximum value of the exponentiated function g(x).
Equation 4.9 is referred to as a “Laplace evaluation” or “method of steepest descent”
[Has99].

Assuming the thermodynamic limit exists, fN and sN will converge to limiting functions
f and s, respectively. The evaluation presented in the last paragraph yields

f(β) = min
e
{e− Ts(e)}, (4.10)

such that Equation 4.6 leads to a connection between the potentials f and s via a Legendre
transform (see Figure 4.2).

Because proteins do not scale up to any thermodynamic limit, the connection presented
in Equation 4.10 does not hold. Therefore inequivalences between microcanonical and
canonical descriptions of these systems are not mere finite-size artifacts that will converge
in the thermodynamic limit but true thermodynamic features.
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∫
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f∞(T ) = mine {e− Ts∞(e)}

FN(T ) = −kBT lnZN(T )

Microcanonical Canonical

Figure 4.2: Thermodynamic quantities in the microcanonical (left) and canonical (right)
ensembles. Arrow heads denote how quantities can be determined from others.
For instance, the density of states determines the partition function but not
the other way around (numerically, at least). For more details, see main text.

4.3 Simulation and analysis methods

In our simulations, the entropy S(E) = kB ln Ω(E) is obtained from calculating the density
of states Ω(E) by means of the Weighted Histogram Analysis Method (WHAM) (see, e.g.,
[KRB+92] and Appendix A). WHAM is a minimum variance estimator of the density of
states which combines overlapping energy histograms sampled during different canonical
simulations. These histograms will delimit the energy interval over which Ω(E) can be
reconstructed. For each peptide studied (Table 4.1) a total of 36 temperatures were sim-
ulated, most of them were set close to the transition temperature of the system in order
to improve the accuracy of the density of states around the transition region/point we
focused on. Each simulation was run for a total time of up to 107 τ (depending on the
peptide), where the potential energy was measured regularly (every ≈ 100 τ). In order to
enhance sampling, the abovementioned canonical simulations were coupled by a parallel
tempering scheme where temperatures are swapped according to a Metropolis criterion
[SW86]. Error bars on ∆S(E) were obtained by bootstrapping the raw energy histograms,
thereby recreating distributions for each replica and calculating the corresponding density
of states. This process was iterated ∼ 50 times. The canonical energy 〈Ecan〉 as a function
of temperature was also calculated from WHAM for all interpolating temperatures that
were simulated.

All order parameters presented here (e.g., radius of gyration, helicity) were sampled
canonically at the same frequency as E. They can be analyzed in the microcanonical
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4 Protein Folding Cooperativity from a Microcanonical Perspective

ensemble by first using WHAM to calculate a two-dimensional density of states Ω(E,O)
(where O denotes the order parameter of interest). The dependence of the order parameter
on E is then determined by averaging O over the density of states at fixed E: 〈O〉E ∝∑

O Ω(E,O)O, applying suitable normalization. We have found for our simulations that
simply averaging all values of O within a small energy interval, irrespective of the simulated
temperature at which the data was sampled, gave virtually identical results compared to the
proper average over Ω(E,O). This indicates that most values of O inside a given energy
interval were sampled in a very narrow temperature interval, such that the Boltzmann
factor associated with each data point trivially drops out of the average. The error of the
mean was systematically calculated for each bin.

4.4 Secondary structure formation

We first examine the structural and energetic properties of the sequence (AAQAA)n with
various chain lengths n = 3, 7, 10, 15. The n = 3 variant is known as a stable α-helix
folder and has been studied both experimentally (e.g., [SYSB91, SDS94, ZJM+05]) and
computationally (e.g., [FAC00, ZJM+05, CDL+09]). The n = 7 peptide has also been
shown to fold into a helix [ZJM+05]. We find that all four peptides form a stable long
helix in the lowest energy sector (see below), but are not aware of any structural study for
n = 10, 15. Since we will soon show that the latter two fold differently from the shorter
ones, an experimental confirmation of their ground state structure would be very useful.

For (AAQAA)3 Figure 4.3 (a) shows a barrier in ∆S(E) as well as a backbending effect
in the inverse microcanonical temperature T−1

µc (E), indicative of a first-order like transition.
The figure also shows the inequivalence between microcanonical and canonical descriptions
for finite-size systems by calculating the relationship between energy and temperature in
both ensembles. The two vertical lines mark the transition region and the corresponding
microcanonical latent heat ∆Q. In the region between E = 40 − 80 E mostly-helical and
mostly-coil conformations coexist, as can be seen from the sharp transitions in the helicity
θ(E) (as determined by the stride algorithm [FA95]) and the number of helices in the
chain, H(E). All these results point to a clear two-state folder.

Increasing the chain length from n = 3 to n = 15 (Figure 4.3 (b), (c), (d)) changes the
nature of the transition significantly. While n = 7 still shows a (lower) barrier in ∆S(E)
and a non-zero microcanonical latent heat ∆Q, n = 10 and n = 15 are downhill folders
(no barrier in ∆S(E) and monotonic T−1

µc (E) curves). The transition region is replaced by
a transition point for which the concavity of S(E) is minimal and ∆Q = 0. This process
is associated with important structural changes around the transition region/point as seen
in the number of helices H(E): while the curve is monotonic for n = 3, it shows a peak
with H(E) > 1 for bigger n. This suggests the existence of multiple helix nucleation sites
upon folding (see representative conformations at the transition point for n = 10, 15 in
Figure 4.3).

In order to further elucidate the structural features of these chains around the transition
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Figure 4.3: (AAQAA)n for different chain lengths: (a) n = 3, (b) n = 7, (c) n = 10, (d)
n = 15. From top to bottom for each inset: ∆S(E), error bars reflect the
variance of the data points (1σ interval); inverse temperatures from canoni-
cal (T−1

can(〈Ecan〉), blue) and microcanonical (T−1
µc = ∂S/∂E, red) descriptions,

where 〈Ecan〉 is the canonical average energy; helicity θ(E) (red) and number
of helices H(E) (blue), both with the error of the mean. Vertical lines mark
either the transition region (n = 3, 7) or the transition point (n = 10, 15).
Representative conformations at different energies are shown.
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Peptide Sequence
helix n = 3 (AAQAA)3

helix n = 7 (AAQAA)7

helix n = 10 (AAQAA)10

helix n = 15 (AAQAA)15

bundle α3D
MGSWA EFKQR LAAIK TRLQA LGGSE AELAA FEKEI AAFES ELQAY KGKGN. . .
PEVEA LRKEA AAIRD ELQAY RHN

Table 4.1: Amino acid sequences of the peptides studied in this chapter. The three helical
regions of the native state (from NMR structure, PDB 2A3D) of the helix bundle
α3D [WCB+99] are underlined (as predicted by stride [FA95]).
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Figure 4.4: Amount of secondary structure as a function of energy and residue for (a)
(AAQAA)3 and (b) (AAQAA)15. Vertical lines mark the transition region (a)
and point (b), respectively.

region/point the fraction of secondary structure (i.e., helicity) was analyzed in dependence
of both energy and residue index for helices n = 3, 15. While for n = 3 helix nucleation
appears mostly around the center of the peptide and propagates symmetrically to the
termini (Figure 4.4 (a)), n = 15 shows two distinct peaks at an energy E slightly below
the transition point (Figure 4.4 (b)). The results suggest the formation of two individual
helices placed symmetrically from the midpoint of the chain—around residue 35—which
only join into one long helix significantly below the transition point. As will be discussed
in section 4.6, these two helices divide the system into two distinct melting domains which
fold non-cooperatively (i.e., folding one helix does not help folding the other) [Pri82, Pri89].
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Figure 4.5: Three-helix bundle α3D. (a) From top to bottom: ∆S(E), error bars reflect
the variance of the data points (1σ interval); inverse temperatures from canon-
ical (T−1

can(〈Ecan〉, blue) and microcanonical (T−1
µc = ∂S/∂E, red) descriptions,

where 〈Ecan〉 is the canonical average energy; helicity θ(E) (red) and number
of helices H(E) (blue), both with the error of the mean. Vertical lines delimit
the transition region. Representative conformations at different energies are
shown. (b) Amount of secondary structure as a function of energy and residue.
Vertical lines mark the transition region.

To probe the behavior of simultaneous folding motifs within a chain, we performed
a microcanonical analysis of the 73 residue de novo three-helix bundle α3D [WCB+99]
(amino acid sequence given in Table 4.1). The CG model used here has been shown to
fold α3D with the correct native structure, up to a root-mean-square-deviation of 4 Å
from the NMR structure (Figure 2.6). While of similar length compared to (AAQAA)15, it
shows a discontinuous transition (Figure 4.5 (a)), and thus a nonzero microcanonical latent
heat during folding. Inside the associated transition region the helicity increases sharply
from 20% to about 65%, and the average number of helices also increases sharply—but
monotonically—from 1.5 to 3. Unlike for the simple n = 7, 10, 15 helices, the transition
region never samples more helix nucleation sites than the number of helices at lower en-
ergies. As can be seen from the representative conformations shown in Figure 4.5 (a), the
ensemble of folded states (E ≈ 130 E) consists of three partially formed helices in largely
native chain topology; the coexisting unfolded ensemble (E ≈ 225 E) consists of a compact
structure containing transient helices. All these findings identify α3D as a two-state folder.
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4 Protein Folding Cooperativity from a Microcanonical Perspective

To better monitor the formation of individual helices, we measured the fraction of helic-
ity as a function of energy and residue, see Figure 4.5 (b). Unlike (AAQAA)n (Figure 4.4),
α3D shows strong features due to its more interesting primary sequence. The turn regions
(dark color) delimiting the three helices (light color) are clearly visible at low energies and
correspond well to the stride prediction of the NMR structure, as shown in Table 4.1.
Moreover, it is clear from this figure that secondary structure formation happens simul-
taneously (i.e., at the same energy) for all three helices, and most of the folding happens
within the coexistence region (marked by the two vertical lines). The residues which form
the native turn regions do not show any statistically significant signal of helix formation at
any energy. Secondary structure has almost entirely formed close to the folded ensemble in
the transition region (left-most vertical line)—in line with the representative conformations
shown in Figure 4.5 (a).

4.5 Tertiary structure formation

A secondary structure analysis alone can only provide information on the local aspects of
folding. Several studies have highlighted the role of an interplay between local and non-local
interactions in protein folding cooperativity (see, e.g., [KC00a, GD09, BHT+09, BBD10]).
Here we first analyze the size and shape of the overall molecule by monitoring, respectively,
the radius of gyration Rg =

√
λ2

x + λ2
y + λ2

z and the normalized acylindricity c = (λ2
x +

λ2
y)/2λ

2
z as a function of E, expressed in terms of the three eigenvalues of the gyration

tensor3 λ2
x < λ2

y < λ2
z. The results for the single helices n = 3 and n = 15 and the

three-helix bundle α3D are shown in Figure 4.6. (AAQAA)3 shows sharp features in both
order parameters within the transition region, indicating an overall structural compaction
(in shape and size) of the chain as energy is lowered. Observe that c approaches 0.13 at
high energy, which is close to the random walk or self-avoiding walk values, both close
to c ≈ 0.15 [Sol71, Sci96]. The longer helix n = 15 shows a non-monotonic behavior in
both Rg(E) and c(E): while the radius of gyration exhibits a minimum around E = 400 E ,
the normalized acylindricity displays a maximum. This indicates a structure that is most
compact and spherical 100 E above the transition point. This dip in Rg(E) corresponds to
a chain collapse into “maximally compact non-native states” [DS95] due to a non-specific
compaction of the chain gradually restricted by steric clashes, at which point secondary
structure becomes favorable. Upon lowering the energy, the radius of gyration increases

3The gyration tensor [TS85] is defined as:

Gmn =
1

N

N∑

i=1

(
r(i)
m − rm

)(
r(i)
n − rn

)
,

where N is the number of particles, r
(i)
m is the mth coordinate of the position vector r(i) of the ith particle,

and rm =
∑N

i=1 r
(i)
m /N (here, we can write rm as a center of geometry, rather than center of mass, because

all masses in the present model are equal; see subsection 2.1.3 on page 17).
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Figure 4.6: (top) Radius of gyration Rg(E) (red) and normalized acylindricity parameter
c(E) (blue), both with the error of the mean, as well as (bottom) rates of
hydrogen-bond and side-chain energies dEhb/dE and dEsc/dE, respectively,
for (a) (AAQAA)3, (b) (AAQAA)15, and (c) α3D. Vertical lines mark either
the transition region (n = 3, α3D) or the transition point (n = 15).
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Figure 4.7: Number of tertiary contacts for α3D as a function of energy. The “All” curve
(red) averages over all non-local pairs whereas the “Native only” curve (blue)
only counts native pairs (see text for details) . Vertical lines mark the transition
region.

and the acylindricity decreases, because the peptide elongates while folding from a compact
globule into an α-helix. Results for the three helix bundle are similar: Rg(E) and c(E) also
show a minimum and a maximum, respectively, slightly above the transition region. This
indicates a similar type of chain collapse mechanism. However, non-monotonic features
appear also at the other end of the transition region (E ≈ 130 E) where the radius of
gyration shows a maximum and the acylindricity plateaus. The evolution of the two
order parameters below the transition region is rather limited, suggesting that only minor
conformational changes take place (i.e., the shape of the molecule stays steady while its
size decreases slightly). In contrast, at high energy both (AAQAA)15 and α3D are still
far away from a random walk limit, as evidenced by the acylindricity being far away from
0.15.

Chain collapse in longer chains (such as (AAQAA)15 and α3D) can readily be observed
by monitoring tertiary contacts as a function of energy. Figure 4.7 shows the total number
of non-local contacts (red curve) as well as the number of native contacts alone (blue
curve). Tertiary contacts are defined here as pairs of residues that are more than five amino
acids apart (this prevents chain connectivity artifacts) and within a 10 Å distance (these
numbers are somewhat arbitrary, but their value does not affect the qualitative behavior of
Figure 4.7). Native contacts correspond here to the set of abovementioned tertiary contacts
sampled with a frequency higher than 1% from a set of 10 000 low-energy conformations
(E ≤ 50 E). While the two curves are virtually identical below the transition region (i.e., all
contacts are native) and of similar trend above it, they behave very differently inside that
interval. Although the number of native contacts monotonically increases as the energy
is lowered (transition from globule to native-like structure), the total number of contacts
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Figure 4.8: Number of tertiary contacts as a function of energy and residue for (a)
(AAQAA)15 and (b) α3D. The two plots have different depth ranges. Ver-
tical lines mark the transition point (a) and region (b).

shows a peak above the transition region and sharply decreases inside it. To approach the
native state, the peptide needs to break more contacts of non-native type than it gains
contacts which are native.

The non-monotonicity of this curve, as well as the Rg data, invite a comparison with
the thermodynamics of water: upon cooling liquid water expands below 4◦ C. Weak but
isotropic van der Waals interactions are given up for strong but directional hydrogen bonds.
This energy/entropy balance seems to occur in a very similar manner here, and essentially
for the same reason. Weak van der Waals side-chain interactions (i.e., tertiary contacts)
are replaced by hydrogen-bond interactions (i.e., secondary structure) at lower energies.
This further confirms the concept of a chain collapse into maximally compact non-native
states: upon lowering the energy (above the transition region) the system has accumulated
a large number of non-native contacts due to a simple hydrophobicity-driven compaction
mechanism. This idea was proposed early on as the “hydrophobic collapse model” or
“molten globule model” [DS95, Bal89]. A similar effect was observed by Hills and Brooks
using a Gō model, where out-of-register contacts had to unfold in order to reach the native
state [HJBI08].

While a transient chain collapse upon cooling is present in both (AAQAA)15 and α3D
(Rg(E) is non-monotonic, see Figure 4.6 (b) and (c)), its effect on tertiary structure for-
mation will greatly depend on the amino acid sequence. Figure 4.8 shows the number of
tertiary contacts of the two peptides as a function of energy and residue. The single helix
n = 15 shows a uniformly small number of tertiary contacts in the low energy region (due
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to the linearity of the helix) and peaks above the transition point (which corresponds to
the energy where Rg(E) is smallest). The tertiary contact distribution in the maximally
compact non-native states is homogeneous along the chain (i.e., all residues have the same
number of contacts). On the other hand, the number of tertiary contacts along the three-
helix bundle (Figure 4.8 (b)) is highly structured, forming stripes as a function of residue
that extend below the transition region. This follows directly from the amphipathic nature
of the subhelices that constitute α3D: residues that form the native hydrophobic core of
the bundle have a higher number of contacts. The presence of these stripes in the energetic
region of collapsed structures (E ≈ 300 E) is due to a strong selection between hydrophobic
and polar amino acids during the hydrophobic collapse, burying hydrophobic groups inside
the globule. The low number of tertiary contacts in the turn regions indicates that they
remain on the surface of the maximally compact globule during chain collapse.

4.6 Interplay between secondary and tertiary structure

Two-state cooperativity has been characterized as a common signature of small proteins
for which the transition of the cooperative domain corresponds to the whole molecule (i.e.,
the protein undergoes a transition as a whole) [Pri79]. While this framework applies well
to the small helix (AAQAA)3, it is difficult to predict its thermodynamic signature from
other grounds: a description of the conventional helix-coil transition is not appropriate due
to the small size of the system and the correspondingly important finite-size effects.

The thermodynamic signature of proteins can better be described for longer chains.
Several arguments can be brought forward to explain the transition we observe for the
longer helices (AAQAA)n for n = 10, 15:

• Most theoretical models of the helix-coil transition (e.g., [ZB59, LR61]) are based on
the one-dimensional Ising model, which—being one-dimensional—shows no genuine
phase transition but only a finite peak in the specific heat. The entropic gain of
breaking a hydrogen-bond (i.e., forming two unaligned spins) outweighs the associ-
ated energetic cost for a sufficiently long chain.

• The structure of the maximally compact state right above the transition (Figure 4.8)
indicates that there is no statistically significant competition between amino acids
(i.e., all residues have the same number of tertiary contacts) and is therefore as-
sociated with a homopolymer-type of collapse, which is indeed barrierless [DS95,
TBRP94].

• The denaturation of large proteins composed of several “melting” domains is not a
two-state transition [Pri82, Pri89]. The presence of two helix nucleation sites around
the transition point (Figure 4.4) indicates the existence of two such melting domains
that fold non-cooperatively: folding one helix is not correlated with the formation of
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4.6 Interplay between secondary and tertiary structure
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Figure 4.9: Canonical helicity θ(T ) for (AAQAA)n, n ∈ {3, 7, 10, 15}. The transition
becomes sharper for longer chains.

the other. We have checked that there are no statistically significant helix-helix inter-
actions between the two domains by calculating contact maps. These were averaged
over the ensemble of conformations for which 50 ≤ E ≤ 150 E (data not shown).

Common expectations is that bigger systems show sharper transition signals, and it
might thus appear surprising that the transition of the (AAQAA)n sequence weakens for
increasing n. However, one needs to bear two things in mind. First, size alone is not
sufficient, dimensionality counts as well. In Technical Point 4.3 we show examples of quasi-
one-dimensional systems for which transitions become weaker for bigger systems, because
in the process of growing they become “more one-dimensional.” When size is associated
with cooperativity, one tends to think of globular (three-dimensional) systems, for which
the size-cooperativity connection is true, but this is not the most general case. And second,
the sharpness might depend on what observable one studies. The helicity θ as a function
of temperature indeed varies more sharply for larger n (see, e.g., [ZDI59, ZB59, LR61];
Figure 4.9), making the response function (∂θ/∂T )n peak more strongly for bigger n. While
this steepening would suggest a stronger two-state nature, this goes against every other
observable which suggests a downhill folder—including the calorimetric ratio (see below);
observing response functions alone can thus be misleading.

The two-state signature of the helix bundle α3D can be understood from two different
perspectives:

• While there are clearly three distinct folding motifs (i.e., three helices), the selective
hydrophobicity (i.e., amphipathic sequence) between residues provides cooperativ-
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4 Protein Folding Cooperativity from a Microcanonical Perspective

Technical Point 4.3 Impact of dimensionality on cooperativity

Consider a two-dimensional Ising model with
periodic boundary conditions in zero external
field and N = Lx × Ly spins. Using the ex-
act solution for the partition function by On-
sager [Ons44], as later generalized by Kauf-
man [Kau49], one can determine the exact
density of states [Bea96, WWWd]. We will
illustrate the extent of cooperativity in such
Ising systems as a function of system size and
aspect ratio by calculating the specific heat
peak, cmax.

The figure on the right (top) shows cmax

for a square system of size
√
N ×

√
N as a

function of N (solid line). One finds that
cmax grows monotonically (in fact, logarith-
mically) with N and will ultimately diverge
in the thermodynamic limit N → ∞. Alter-
natively, a rectangular patch of N spins that
is grown in only one direction shows a dras-
tically different behavior: the dotted line in
the figure (top) shows cmax for a system of
size 4×N/4. One can see that the curve first
peaks before it decreases.
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The bottom part of the figure provides a similar example: a rectangular patch of height
6 (dotted line) and 10 (solid line) and width L shows that cmax decreases after an initial
peak. By considering cmax as a proxy for cooperativity, these results show that a system
becoming increasingly one-dimensional can in fact lose cooperativity.
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4.6 Interplay between secondary and tertiary structure

ity:4 folding one helix helps the formation of the others.

• The barrier associated with a two-state transition is interpreted in the hydrophobic
collapse model as the result of the cost of breaking hydrophobic contacts from a
maximally compact state into the folded ensemble [DS95]. Experimental studies of
this protein showed a fast folding rate of 1 − 5µs and single-exponential kinetics
[ZAM+03], compatible with a two-state transition.

Cooperative secondary and tertiary structure formation had previously been proposed as
a mechanism for two-state folding on the basis of lattice simulations [KC00a] and theo-
retical models [GD09]. As presented here, our results highlight also the interplay between
secondary structure formation (see Figure 4.5 (b)) and the loss of non-native tertiary con-
tacts (see Figure 4.7)—both occurring exactly within the coexistence region—as a possible
mechanism for folding cooperativity.

This interplay between secondary and tertiary structure formation is also clearly il-
lustrated from the energetic rates of hydrogen-bond (dEhb/dE) and side-chain (dEsc/dE)
formation—assumed to be suitable proxies of secondary and tertiary contacts, respectively.
Figure 4.6 shows that secondary structure formation is most pronounced within the coex-
istence region for (AAQAA)3 and α3D while it occurs over a broad energy interval for the
long helix (AAQAA)15. The dip below zero of dEsc/dE for the two longer chains is remi-
niscent of the sharp change in the total number of tertiary contacts shown in Figure 4.7 for
α3D. It is a direct consequence of the reorganization of the maximally compact non-native
states into the folded structure. The presence of such feature in both (AAQAA)15 and
α3D indicates that independent of its nature, the folding transition is driven by the loss
of non-native tertiary contacts (i.e., the region where dEsc/dE < 0), which is reminiscent
of the heteropolymer collapse model [DS95]. Secondary structure formation, on the other
hand, shows very different signals: secondary structure formation in a downhill-folding
peptide occurs over a much broader interval than for the loss of non-native tertiary con-
tacts, whereas these two quantities are contained within the same narrow interval for a
two-state peptide (for more details, see [BBD10]).

Compaction of the unfolded state upon temperature increase has been observed experi-
mentally by Nettels et al. using single-molecule FRET [NMSK+09]. While in our simula-
tions the decrease in the radius of gyration (Figure 4.6) can be explained by a combination
of the hydrophobic effect and the loss of helical structure, Nettels et al. showed similar
behavior for an intrinsically disordered hydrophilic protein, where other mechanisms are
likely to play a role.

The present work avoided any reference to free energy barriers so far. While the nature of
the finite-size transition can unambiguously be characterized from the presence of a convex
intruder in the entropy S(E) [Gro01], the mere existence of a free energy barrier is not a
strong criterion because, first, the definition of a free energy barrier is not unique in a finite-

4Here, we refer to cooperativity in the broader sense of interactions making transitions more sharply
defined.
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4 Protein Folding Cooperativity from a Microcanonical Perspective

size system [Jan98, BK92] and, second, the height of the barrier depends on the reaction
coordinate used. Chan [Cha00] therefore argued that the calorimetric criterion, which
relates the van ’t Hoff and calorimetric energies, is often more restrictive on protein models
than the existence of such a free energy barrier. Still, the density of states calculations
performed here correlate well with calorimetric ratios for (AAQAA)n, n = {3, 7, 10, 15},
and α3D: δ = 0.78, 0.76, 0.51, 0.52, and 0.78, respectively. These were determined by
analyzing the canonical specific heat curve CV(T ) as in Kaya and Chan [KC00b] (κ2 without
baseline subtraction; see Technical Point 4.1). The value of 0.78 for the helix bundle agrees
with an earlier theoretical calculation of the similar bundle α3C from Ghosh and Dill
[GD09], who found δ = 0.72.
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5 Amyloid-β Oligomerization

Simulations of 32 Amyloid-β1−42 peptides stabilize large oligomers only limited
in size by the simulation itself. This contradicts a recent coarse-grained study of
similar resolution. Yet, the structure of a pentamer agrees remarkably well.

The field of protein aggregation—how proteins associate to form large-scale structures—
has become an intense area of research due to its link to many degenerative diseases (e.g.,
Parkinson’s [Dav08], Alzheimer’s [WHK+97]).

Protein Amyloid-β1−42 (Aβ1−42) has been repeatedly identified as the main constituent of
amyloid plaques in the brains of Alzheimer’s disease patients (e.g., [SLM+08]). Its sequence
is shown in Table 5.1. It is formed after cleavage of the amyloid precursor protein (APP),
a protein tied to the plasma membrane. The gene for APP is located on chromosome 21.
Down syndrome patients—who carry three copies of chromosome 21—have been shown
more susceptible to Alzheimer’s [Man88]. Cleavage of APP yields peptides of different
lengths due to the variety of secretases involved [TT07]. Aβ1−42 is the most fibrillogenic
sequence out of the various isoforms created, e.g., Aβ1−40. Moreover, various familial
mutations have been identified and can trigger early onsets of the disease [SCLH99].

The amyloid hypothesis [HS02] states that the amyloids are responsible for the pathology
through a cascade of events, ranging from protein aggregation to fibrillar structures.1 Still,
the causality invoked here is subject to much debate: it is not clear whether the deposits
found in patients are the cause or the result of the disease. The sequential oligomerization
of amyloids leads to different structures: monomers, oligomers, protofibrils, fibrils. Several
recent studies suggest that the cytotoxic species of Aβ1−42 may be the oligomeric forms
rather than the mature fibrils (e.g., [KHT+03]). The characterization of the effects of
amyloid aggregation on neuronal cells is difficult to achieve experimentally because of the
complexity of the system, as well as the intrinsic kinetics associated with any aggregation
process. There is no X-ray or NMR structure of these oligomers because of their disorder
and transient nature (i.e., they are intermediate forms of larger fibrillar structures). On
the other hand, Petkova et al. presented a putative structural model for the isoform Aβ1−40

using solid-state NMR [PIB+02].

From a computational standpoint, the atomistic simulation of several Aβ1−42 proteins is
untractable due to the large equilibration time involved. Recent studies of Aβ1−42 include
either a single protein (e.g., [XSL+05, SYM+07]),2 or the aggregation mechanisms of parts

1Concomitantly, other pieces of evidence point to the role of intra-cellular deposits of tau proteins.
2Even the complexity of a single protein is too large to perform exhaustive all-atom folding simulations.
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D̄AĒFR
¯

H
¯
D̄SGY ĒVH

¯
H
¯
Q K

¯
LVFF AĒDVG SNK

¯
GA IIGLM VGGVV IA

Table 5.1: Amino acid sequence of Aβ1−42. The coding of amino acids obeys the following
scheme: positively charged (overline); negatively charged (underline); hydropho-
bic (dark green); hydrophilic (black). Aβ1−40 exhibits the same sequence except
for two fewer amino acids at the end.

of the sequence (e.g., [MN02, BBW+06]). Here, in an attempt to characterize the large-
scale oligomerization properties of Aβ1−42, we present coarse-grained simulations of 32
full-length Aβ1−42 proteins.

5.1 Large-scale aggregation

The large-scale aggregation properties of Aβ1−42 were studied by performing a simulation
of 32 peptides in a cubic box of side length 250 Å. To probe the temperature dependence—
as well as facilitate sampling—48 replicas at different temperatures were coupled according
to a parallel tempering scheme [SW86]. The 48 temperatures were uniformly distributed
on a logarithmic scale between T = 1.0 E/kB and T = 2.2 E/kB.3 Each replica was run for
300 000 τ . Statistics were collected from 100 snapshots taken over the last 100 000 τ .

Figure 5.1 shows representative conformations at the lowest and highest temperatures
simulated, i.e., T = 1.0 E/kB and T = 2.2 E/kB, respectively. While high-temperature
conformations mostly sample low-number aggregates (e.g., monomers, dimers), the low-
temperature simulations show large aggregates, only limited in size by the number of
peptides simulated. Figure 5.1 (a) displays the oligomerization of 30 monomers into a
highly disordered structure as well as a dimer.

To characterize quantitatively oligomer-size distributions, inter-peptide hydrogen-bond
patterns were analyzed from simulation snapshots: two monomers that formed inter-
peptide hydrogen bonds4 were marked as being part of the same oligomer. Oligomers
were sequentially grown until no other peptide hydrogen-bonded to the aggregate. Finally,
the probability of formation of an n-mer was calculated from the number of such oligomers

3The number of required replicas scales heavily with the complexity of the system: the energy of the
system scales like system size E ∼ N ; the range of energies sampled at a given temperature is given by
the root-mean-square energy fluctuations which scales like the square root of system size

√
N ; therefore

the relative size of the fluctuations compared to the energy decreases as 1/
√

N [NB99]. This explains why
atomistic replica-exchange simulations of proteins use small temperature intervals, spanning only 2− 5K.

4Hydrogen bonds were identified using the stride algorithm [FA95]. The original implementation of
the algorithm can be found at http://webclu.bio.wzw.tum.de/stride/. Note that the code does not
handle periodic boundary conditions (i.e., hydrogen bonds between chains at two edges of the periodic box
would not be considered). The analysis performed here was done using a modified version of the stride

package that incorporated this feature, written by the author of the present thesis. The implementation
is straightforward and thus not detailed here.
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5.1 Large-scale aggregation

(a) (b)

Figure 5.1: Conformations of a system of 32 Aβ1−42 sampled at (a) T = 1.0 E/kB and (b)
T = 2.2 E/kB.

sampled during the simulation normalized by the total number of oligomers within the
ensemble of snapshots.

The distribution of oligomer sizes at various temperatures is presented in Figure 5.2.
Figure 5.2 (a) shows a clear bimodal distribution: one peak around 30-mers and another
one around dimers. Clearly the distribution is dominated by finite-size effects as the
simulation only contains 32 peptides. Figure 5.2 (b), (c), and (d) show a progressive shift
of the distribution towards lower aggregates when increasing temperature. Remarkably,
none of these distributions show a non-zero peak.5 Higher temperature distributions decay
quickly as a function of oligomer size.6

In a recent study from Urbanc et al., the same simulation setup used with a dif-
ferent coarse-grained model showed a rather narrow bimodal distribution that peaked
around trimers and pentamers, with no significant population of large-number aggregates
[UCY+04]. Corresponding simulations of Aβ1−40 peptides revealed a unimodal distribution
that peaked at dimers. A previous experimental in vitro study of the oligomer size distri-
bution of Aβ1−40 and Aβ1−42 also showed unimodal and bimodal distributions, respectively
[BKL+03]. However, their data suggests that the average Aβ1−42 oligomer is significantly
larger than for Aβ1−40, as given by dynamic light scattering measurements as a function
of hydrodynamic radius Rhyd. According to their results, the oligomer size distribution
of Aβ1−42 peaks at a value of Rhyd, 42 that is roughly five to ten times larger than corre-
sponding measurements on Aβ1−40. Assuming that the size of an oligomer (i.e., number of
monomers) scales like R3

hyd, one can estimate how much larger the Aβ1−42 oligomer must

5The small, intermediate peaks in Figure 5.2 (b) and (c) are not to be trusted.
6The data is not accurate enough to clearly identify the type of distribution (e.g., exponential).
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(c) T = 1.8 E/kB
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(b) T = 1.4 E/kB
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(a) T = 1.0 E/kB
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Figure 5.2: Oligomer distribution functions of a system of 32 Aβ1−42 at temperatures (a)
T = 1.0 E/kB, (b) T = 1.4 E/kB, (c) T = 1.8 E/kB, and (d) T = 2.2 E/kB.

be. Denoting n40 and n42 the oligomer sizes of Aβ1−40 and Aβ1−42, respectively, we find

R3
hyd, 42

R3
hyd, 40

=
n42

n40

. (5.1)

From their results, we estimate a lower boundary for the ratio of hydrodynamic radii
Rhyd, 42/Rhyd, 40 ≈ 7/2. This would imply that the Aβ1−42 oligomers are ≈ 40 times larger
(in size) than Aβ1−40 oligomers. This presents a serious discrepancy with Urbanc’s simula-
tion results which predict dimers and pentamers for Aβ1−40 and Aβ1−42, respectively. The
abovementioned experimental results clearly alude to much larger oligomers. Therefore, a
simulation of 32 peptides would most likely be too small to probe the oligomer size dis-
tribution of Aβ1−42—in line with the strong finite-size effects encountered in the present
low-temperature simulations (Figure 5.2 (a)).

While the computational study of Urbanc et al. was performed at a single temperature,
none of the distributions sampled from the present parallel tempering simulation matches
their data, even qualitatively. This discrepancy may arise from two sources: insufficient
sampling in any of the simulations and the accuracy of each force field:

• The complexity of the system studied here is associated with long correlation times
(i.e., slow dynamics). In order to better sample phase space, we used a parallel
tempering scheme over a large temperature interval. 100 snapshots were used to
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5.2 Structure of the pentamer

collect statistics.7 On the other hand, the study of Urbanc et al. consisted of standard
canonical simulations. Statistics were collected from eight simulations, each of which
was analyzed at three different times.

• While both models use the same mapping (i.e., four beads per amino acid, including
one for the side-chain) and contain explicit hydrogen bonds, amino acid specificity is
more finely resolved in the model presented in this thesis (chapter 2), whereas only
four types of amino acids are considered in Urbanc et al. Also, their model was
parametrized to reproduce the conformational changes of aggregating α-helices into
β-sheet structures [DBB+03].

It is unclear whether a larger simulation (i.e., more peptides) would ever yield a non-zero
peak in the oligomer distribution that is not due to finite-size effects. The oligomerization
process shown here describes a hydrophobicity-driven mechanism—the large aggregates
stabilized at low temperatures break down upon heating. Experimental measurements
indicate very different oligomer-size distributions for Aβ1−40 and Aβ1−42 and suggest that
Aβ1−42 oligomers may be much larger than 32 peptides [BKL+03].

5.2 Structure of the pentamer

To further elucidate the discrepancy between the model presented in chapter 2 and the
one used in Urbanc et al. [UCY+04], a structural comparison of Aβ1−42 pentamers was
performed. These oligomers show high conformational variability—they do not stabilize
a unique fold. Thus, any attempt to characterize the structure of such entities will be
the result of averages over very different structures. Here, we characterized the average
distance of each residue to the center of mass of Aβ1−42 pentamers. Figure 5.3 shows a
conformation of such a pentamer, sampled at T = 1.0 E/kB. While compact, the system
lacks any structural order and is subject to strong conformational variability.8

Following a similar simulation setup as in section 5.1, a simulation box consisting of five
Aβ1−42 was studied. All simulation snapshots consisting of a pentamer were considered for
analysis, performed at T = 1.0 E/kB. Figure 5.4 (left) displays the distance from center
of mass of each residue, averaged over all five peptides as well as sampled conformations.
Figure 5.4 (right) shows its equivalent from the study of Urbanc et al. (red curve). The
agreement—up to a vertical shift—is remarkable. This shift indicates that the pentamer
simulated in this work is more compact. It may be due to a temperature difference between
the two simulations or a discrepancy between the two force-field parametrizations. A
similar analysis at higher temperatures flattened the overall distribution rather than merely
shifting it upwards. The positions of the dips (e.g., residues 15–20, 30–35) correlate highly
with amino-acid hydrophobicity. Overall, the results can be explained, to a large extent,

7The number of extracted snapshots was kept low due to large auto-correlation times.
8Again, Figure 5.3 is only one sampled conformation out of many possible.
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5 Amyloid-β Oligomerization

Figure 5.3: Sampled (but not necessarily representative) conformation of an Aβ1−42 pen-
tamer at T = 1.0 E/kB.
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Figure 5.4: Average distance to the center of mass of the pentamer for each residue:
(left) this work, conformations sampled at T = 1.0 E/kB; (right) red curve—
simulation study from Urbanc et al. [UCY+04]. Copyright (2004) National
Academy of Sciences, USA.
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5.2 Structure of the pentamer

by considering the hydrophobicity scale of amino acids alone. It might therefore not be
surprising that the two models behave similarly.
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6 Protein-Lipid Interactions

Many proteins function in, or close to, the cell membrane. In this chapter, we
cross-parametrize the peptide model presented in chapter 2 with a high-resolution,
implicit-solvent coarse-grained model for lipids. Coarse-grained potentials are
tuned to reproduce atomistic potential of mean force curves for the insertion of sin-
gle amino acid side chains into a DOPC bilayer. The validity of the protein-lipid
model is probed by various simulations of synthetic transmembrane proteins.

Cell membranes form the boundaries between the inside and outside of the cell and, in
eukaryotic cells, form the structural basis of many important cellular organelles (such as
nucleus, endoplasmic reticulum, Golgi apparatus, and mitochondria). They also control
the selective permeation of ions and organic molecules via channels and pores [AJL+02].
They mainly consist of (i) a lipid bilayer and (ii) embedded proteins:1

• The lipid bilayer stabilizes membrane shape and structure; it is made of two layers
of lipid molecules. Lipids form a broad group of naturally occurring amphiphilic2

molecules (Figure 6.1 (a)). Three classes of lipids are present in the membranes of
eukaryotic cells: phospholipids (the most abundant species), glycolipids, and choles-
terol. They differ both in terms of structure and function [BTS10]. The hydrophobic
effect (e.g., [Tan80]; see also section 1.1 on page 1) drives the self-assembly of these
molecules into various supramolecular structures (e.g., vesicle, bilayer sheet) depend-
ing on concentration and chemical environment [Isr92]. In water, a lipid bilayer will
expose its polar head groups to the solvent and bury its apolar hydrocarbon tails
(i.e., fatty acids). While thin (≈ 5 nm), this partitioning prevents the diffusion of
ions and polar molecules through the bilayer.3

• Integral (i.e., permanently attached to the membrane) and peripheral membrane pro-
teins (Figure 6.1 (b)) amount to half of the membrane weight [FP02]; they provide
many biological functions to the cell membrane, e.g., transporters, channels, recep-
tors, enzymes [AJL+02]. The structure of only a small number of transmembrane
proteins has been solved so far (using X-ray or NMR techniques), due mainly to

1Cell membranes also contain carbohydrates in the form of glycoproteins and glycolipids [BTS10].
2Chemical compound possessing spatially separated hydrophilic and hydrophobic moieties.
3In terms of electrostatics, the bilayer creates a large change in dielectric constant: while ǫ = 80 in

water, ǫ ≈ 3 in a hydrophobic environment. This generates a large free energy barrier for an ion to
penetrate the membrane.
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Figure 6.1: (a) Chemical representation of a phospholipid molecule. Fatty acid chains (de-
noted R1 and R2) form the hydrophobic region of the molecule. The hydrophilic
region is composed of a phosphate group and a head group (denoted X; e.g.,
serine, choline, glycerol). An atomistic representation of a phosphatidylcholine
lipid is displayed in Figure 6.2. (b) Cartoon representation of a cell membrane
composed of lipid molecules (beige) crowded by many integral and peripheral
proteins (green inclusions). Adapted by permission from Macmillan Publishers
Ltd: Nature 438, 578–580 (1 December 2005), copyright 2005 [Eng05].

(i) poor solubility in water4 and (ii) crystallization difficulties caused by disordered
associations [FP02].

Overall, the membrane behaves as a two-dimensional fluid of oriented lipids and proteins,
where lateral diffusion is fast compared to the transition of a molecule from one leaflet to the
other (i.e., “flip-flop”) [SN72]. The fluidity of the membrane is largely controlled by fatty
acid composition and cholesterol content. For a more detailed introduction to proteins and
lipids in membranes, we refer the reader to standard biochemistry and molecular biology
textbooks (e.g., [AJL+02, GG08, BTS10]).

Many of the abovementioned biophysical processes involving the interaction of proteins
with lipid membranes operate at time- and length-scales that are currently unattainable
by atomistic computer simulations (limited to small systems in the 10 ns− 1µs range). To
cope with this difficulty, several lipid-protein coarse-grained models of various degrees of
resolution have been developed and studied (e.g., [VSS05, BS06, ID08, MKP+08, WBS09]).

4Integral proteins form a large hydrophobic surface that interacts favorably with the hydrocarbon tails
of the bilayer lipids.
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One of them, the MARTINI force field [MRY+07, MKP+08], has been applied to a wide va-
riety of lipid-protein systems, such as pore formation by antimicrobial peptides [RSGM10],
helix rearrangements of the ATP synthase subunit C [SRM09], association behavior of
glycophorin A [SM10], and lateral organization of transmembrane helices in heterogeneous
model membranes [SdJH+11]. It maps on average three to four heavy atoms into one
coarse-grained bead, and parametrizes each bead according to thermodynamic data (in
particular, oil/water partitioning coefficients). By dividing molecules into sets of chem-
ical building blocks, it provides a generic force field that (ideally) does not require any
reparametrization each time a new system is studied. Other properties of the MARTINI
force field include:

• Explicit representation of the aqueous solvent by grouping four water molecules into
one Lennard-Jones bead.

• Explicit short-range electrostatics, beyond which a uniform dielectric constant ǫ = 15
is applied (i.e., “reaction field”). This value is somewhat arbitrary as it neither
represents the aqueous environment (ǫ = 80) nor the hydrophobic regions (ǫ ≈ 3).
An extension of the force field involving Drude-like (i.e., polarizable) water beads
was recently proposed [YSSM10].

• While protein side-chain energetics and packing are represented with high accuracy,
the model constrains secondary structure via the dihedral potentials linking the Cα

beads of the backbone.5

In the following, we present an alternative protein-lipid coarse-grained model which offers
different features, including (i) implicit water—allowing for significant speedup—in such
a way that important solvent effects are treated implicitly, (ii) no explicit electrostatics,6

and (iii) unconstrained secondary structure formation of the protein model (chapter 2).
The implicit-solvent coarse-grained lipid model used in this work, developed by Wang

and Deserno [WD10b, WD10a], provides a similar resolution as the MARTINI force field
(i.e., three to four heavy atoms per bead), which fits well with the peptide model’s
resolution. Figure 6.2 (b) represents a coarse-grained 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine (POPC) lipid, as described in [WD10b]. It is made of 16 beads and 8 bead
types: CH Choline; PH Phosphate; GL Glycerol; E1 and E2 Ester groups; AS Saturated

5There is little hope that a one-bead-per-backbone model will ever encode enough information to
accurately reproduce local conformations (in particular, Ramachandran plots; see chapter 2).

6While essential, electrostatics is both computationally expensive and difficult to coarse-grain. We
point out that (i) simply putting charges on the beads and working out 1

r interactions is not the right
thing to do in the presence of dielectric discontinuities, (ii) the coarse-grained lipid model used here
targets neutral lipids—the contribution from partial charges being hopefully absorbed in the coarse-grained
potentials, and (iii) the interaction between charged amino acids is, to some extent, reproduced in the
Miyazawa-Jernigan matrix [MJ96] used for the side-chain–side-chain interactions. That being said, we
warn the reader against the use of this model for phenomena that heavily rely on electrostatics (e.g.,
electroporation [Tie04]).
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alkyl group −(CH2–CH2–CH2)−; AD Unsaturated alkyl group −(CH2=CH2)−; AE Hy-
drocarbon endgroup −(CH2–CH3). It was systematically parametrized to reproduce the
radial distribution functions of groups of atoms of POPC from atomistic simulations using
iterative Boltzmann inversion [Sop96]. Because of the lack of solvent in the coarse-grained
system, an additional effective cohesion was included to compensate for the lack of a con-
fining pressure [WD10b]. On top of its ability to self-assemble a random dispersion of lipids
into a bilayer, Wang and Deserno showed that their model can almost quantitatively repro-
duce many of the properties of a POPC bilayer, such as bending and stretching modulus,
mass density profile, and orientational P2 order parameter of intramolecular bonds. They
showed that the construction of other types of lipids (e.g., DOPC,7 DPPC8)—starting
from the same set of coarse-grained beads as POPC—provides reliable transferability in
terms of structure and area per lipid [WD10a].9

6.1 Force-field cross-parametrization

In this section, we derive potentials of interaction for the cross-parametrization of the
two force fields: the protein (see chapter 2 and [BD09]) and the lipid [WD10b, WD10a]
models. The parametrization aims at reproducing the potential of mean force (PMF)
curves for the insertion of individual amino acid side chains into a DOPC bilayer.10 These
PMFs provide additional spatial resolution compared to experimental hydrophobicity scales
(e.g., [FP83, WW96]). Because of the planar structure of lipid bilayers, free energies as
a function of the z coordinate (i.e., perpendicular to the bilayer plane), F (z), incorporate
much of the thermodynamic information required to describe the energetics of insertion
of molecules in a membrane.11 Moreover, the spatial ordering of lipid groups (e.g., alkyl
chains, phosphate) in a bilayer provides a means to understanding the impact of each group
onto F (z).

The reference data is based on atomistic simulations performed by MacCallum et al.
[MBT08], where amino acid side chains (i.e., starting at the β-carbon) were inserted in
a 64-molecule DOPC bilayer using the OPLS all-atom force field [JMTR96, KFTRJ01].
Their study provided curves for the free energy of insertion of side chains for all standard
amino acids except Gly, His, and Pro. While Gly and Pro were not calculated because of
the chemistry of their side chain (the side chain of Gly holds no heavy atom; the side chain

71, 2-dioleoyl-sn-glycero-3-phosphocholine.
81, 2-dipalmitoyl-sn-glycero-3-phosphocholine.
9The difference between DPPC, POPC and DOPC lies in their lipid tails alone: (i) they comprise 0,

1, and 2 one-fold unsaturated lipid tails, respectively, and (ii) each lipid tail contains different numbers of
carbon atoms: 16 + 16 (DPPC), 16 + 18 (POPC), and 18 + 18 (DOPC).

10This parametrization focuses on reproducing the energetics of peptide-lipid interactions, as opposed
to, say, the structure.

11This projection excludes the orientational dependence of the side chain. On the other hand, the
parametrization of a one-bead-per-side-chain model using radial interactions would not allow for any
angular dependence.
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(b) (c)(a)

Cα

Cβ

C’

N

Figure 6.2: (a) Coarse-grained amino acid (colors: N dark blue, Cα and C’ cyan, Cβ or-
ange). Lipids interact with backbone bead Cα and side-chain bead Cβ. (b)
Coarse-grained POPC lipid, as presented in [WD10b]. Reproduced in part
with permission from Wang, Z.-J. and Deserno, M. J. Phys. Chem. B 114
(2010), no. 34, 11207–11220. Copyright 2010 American Chemical Society. (c)
Side view of a 72-molecule DOPC bilayer as well as two amino acid side chains
(in blue) constrained at the center and outside of the membrane.

of Pro is connected to the backbone at both the central carbon and the amide group, see
Table 1.1 on page 2), His causes issues due to its multiple protonation states (besides, its
pKa is close to neutral pH, see Table 1.2). Ionizable residues Arg, Lys, Asp, and Glu were
calculated for both the charged and neutral forms. The results are reproduced in Figures
6.3, 6.4, and 6.5 (blue, dashed).

The cross-parametrization thus consists of optimizing potentials of interaction between
lipids and amino acids to reproduce the PMFs derived from MacCallum et al. [MBT08].
Because of the limited amount of information that can be extracted from these free energy
profiles, not all cross-interactions can be determined. Specifically, the PMFs derived from
atomistic simulations only provide information on the interaction between lipids and side
chains, rather than the entire amino acid. The atomistic PMFs will be used as target
function for the free energy of insertion of the coarse-grained side-chain bead Cβ in a
DOPC bilayer. Purely repulsive interactions between lipid and peptide Cα, N, and C’
beads will model the excluded volume effect between lipids and the protein backbone. See
Figure 6.2 (a) for details.
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6 Protein-Lipid Interactions

6.1.1 Simulation and analysis methods

Each simulation consisted of a 72-molecule DOPC bilayer as well as two amino acids. In
addition to being computationally advantageous, simulating two amino acids allowed the
insertion of a residue in each bilayer leaflet, thus avoiding differences in leaflet area due to
the presence of an inclusion. See Figure 6.2 (c) for a simulation snapshot.

Simulations were run at constant temperature (kBT = E) and lateral bilayer tension
(Σ = 0) for a total simulation time t = 200 000 τ and time step δt = 0.1 τ .12 Temperature
control was achieved using a Langevin thermostat with friction constant Γ = 0.2 τ−1,
whereas a modified Andersen barostat allowed for box resizing in the lateral x and y
directions (box friction Γbox = 4× 10−5 τ−1 and a box mass Q = 5× 10−4M) [KD99]. All
simulations were performed using ESPResSo [LAMH06].

The distance between the amino acid side chain and the bilayer midplane was calculated
by measuring the difference between (i) the z coordinate of the side chain bead and (ii) the
z coordinate of the center of mass of the bilayer. 10 000 data points were recorded every
20 τ . Umbrella sampling (see subsection A.1.5) was used to constrain the z positions of the
two inclusions, applying a harmonic restraint of spring constant k = 2 E/Å2. Pairs of two
inclusions were systematically placed 30 Å apart (corresponding roughly to the height of a
monolayer) to avoid artifacts.13 32 such umbrellas, each separated by 1 Å, allowed to obtain
biased distributions in an interval 0 < z < 32 Å, where z = 0 corresponds to the bilayer
midplane. We unbiased the sampled distributions using the Weighted Histogram Analysis
Method (WHAM) (see Appendix A). In particular, the individual distribution functions
were combined using the optimized algorithm presented in subsection A.1.4, rather than
the conventional iterative scheme (subsection A.1.3). Convergence was reached ≈ 30 times
faster using the optimized technique. Error bars were calculated from bootstrapping the
biased distributions (see subsection A.1.6).

6.1.2 Interaction potentials and parametrization

Potentials of interaction were set between all lipid and amino acid bead types using only
Lennard-Jones (LJ) and Weeks-Chandler-Andersen (WCA) potentials as functional forms

ULJ(r) = 4ǫ

[(σ
r

)12

−
(σ
r

)6
]
, (6.1)

UWCA(r) =





4ǫ

[(σ
r

)12

−
(σ
r

)6

+
1

4

]
, if r < 21/6σ

0, otherwise.
(6.2)

12As in chapter 2, E = kBTroom is the intrinsic unit of energy, τ of time, andM of mass.
13Two kinds of artifacts were addressed: (i) inserting two—rather than one—particles in a bilayer can

prevent pressure differences between the two leaflets, and (ii) constraining two particles at different heights

might avoid significant structural effects on the bilayer.
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6.1 Force-field cross-parametrization

ULJ(r) was consistently cut and shifted to 0 at a distance r = 15 Å. During parametrization,
we systematically assigned an interaction strength ǫ = 1.0 E for WCA potentials since the
function is so insensitive to changes in this parameter.

Lipid bead types AS and AD were not distinguished in terms of their interactions with
peptide beads. They were both denoted as AS in the following. Likewise, E1 and E2 were
both associated to the same bead type ES in terms of nonbonded interactions with amino
acids.

Sets of interaction potentials were iteratively refined until the resulting PMF matched
the target curve. A single iteration consisted of (i) running 16 simulations (2 umbrellas
per simulation yields a total of 32 umbrellas) with a predefined set of interaction potentials
(CPU time per simulation≈ 22 hours) and (ii) calculating the resulting PMF from WHAM.
While devising an algorithm capable of automatically optimizing the parameters ǫ and σ of
the potentials would seem fit, it has shown difficult to effectively establish proper update
rules. A random search through parameter space would be intractable because of the time
required for a single iteration to complete. Indeed, the parametrization between a side
chain and 6 lipid bead types involves 12 free parameters (i.e., ǫ and σ for each potential)
per amino acid.14 Instead, parameter optimization was performed by hand. While the
convergence of the first PMF required a large number of iterations,15 a number of guidelines
were empirically observed and subsequently applied to improve the iterative process:

• We used either LJ or WCA potentials to model attractive and repulsive interactions,
respectively (i.e., only one such potential was chosen for a given lipid-protein interac-
tion). A larger value of σ increases the excluded volume effect, thus locally shifting
the PMF up. Similarly, a stronger interaction strength ǫ will provide more cohesion
and affect the free energy profile downwards.

• The effect of choline beads (CH) have a comparatively weak effect on the PMF.
Other lipid beads (see below) have a stronger impact on the free energy profile simply
because they are further away from bulk water—set as the reference point of the PMF
(i.e., F (z →∞) = 0)—and thus shift the curve over the corresponding interval.

• The interaction between side chain beads and phosphate groups (PH beads) were
tuned to reproduce the shape of the PMF in the lipid head region. Many profiles
display unfavorable interactions in that region (i.e., F (z) > 0). A WCA potential
with varying radius σ allowed to reproduce this feature best.

• Glycerol groups form the core of the interfacial region (z ≈ 15− 20 Å). Many PMFs
display strong energetic variations in this small interval. For instance, the profiles
of hydrophobic amino acids show sharp drops between the lipid head and lipid tail

14This number is a lower bound as it does not take into account the choice in functional form of the
potential (i.e., ULJ(r) or UWCA(r)).

15The author of the present thesis believes that his very first white hair grew while parametrizing
alanine. C. Yolcu, personal communication.
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regions. This was reproduced at the coarse-grained level by setting strong ǫ parame-
ters for the LJ interaction. The σ parameter allowed a fine-tuning of the range over
which the drop extended.

• Strong interactions between side chains and ester groups (modeled here by ES beads)
have shown to flatten out the PMF curve. In many cases, sharp features between the
lipid tails and interfacial region (z ≈ 10− 15 Å; e.g., Cys) have best been reproduced
by setting weak interactions (or, alternatively, no interactions) between side chains
and ES beads.

• Alkyl AS/AD and AE beads affect a remarkably large z interval of the free energy
profile (up to z ≈ 18 Å), requiring a careful adjustment of the parameters. While AE
beads naturally have a lower impact on the PMF, their parametrization allowed to
fine-tune the close vicinity of the bilayer midplane.

Although the peptide-lipid cross-parametrization is optimized here using a DOPC bi-
layer, we will assume these potentials to be transferrable across lipid types (e.g., POPC,
DPPC).

6.1.3 Optimal parameters and PMFs

Side chains

Table 6.1 shows the sets of interaction potentials and parameters that yielded the closest
free energies F (z) to the atomistic targets. For each amino-acid–lipid-group pair, the table
displays (i) the functional form of the interaction, (ii) the strength of the interaction ǫ,
and (iii) the range of the interaction σ. Empty fields mean no interaction. Figures 6.3,
6.4, and 6.5 show both the coarse-grained (in red) and atomistic (in blue) PMFs.

While it was often possible to reach a good agreement between pairs of curves (i.e.,
coarse-grained and atomistic), certain features have shown difficult to reproduce:

• High free energies near the membrane center for charged residues (i.e., Arg+, Asp−,
Glu−, Lys+). The atomistic PMFs in the region z < 5 Å display a steep, linear
behavior. All attempts to reproduce this feature in the coarse-grained simulations
yielded a plateau that extended from the center of the bilayer for a few Ångströms.
The coarse-grained PMFs were thus shifted downwards to best reproduce the rest
of the curve. It is interesting to note that such a behavior was observed previously
using the MARTINI force field [MKP+08]. In this case, however, the PMFs were an
independent test of the parametrization. This artifact is likely the result of coarse-
graining, thus lowering the possibility for sharp features in the PMFs.

• Strong features in certain amphipathic and aromatic residues (Cys, Met, Trp) show
large variations in rather confined regions of the bilayer. In certain cases, it has
shown difficult to appropriately tune the interaction potentials to match the atomistic
PMFs.
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CH PH GL ES AS AE
ǫ σ ǫ σ ǫ σ ǫ σ ǫ σ ǫ σ

Ala lj 1.0 5.96 wca 1.0 9.54 lj 4.5 5.26 wca 1.0 4.61 lj 0.85 4.21 lj 0.85 4.21

Arg0
lj 1.0 6.66 wca 1.0 9.32 lj 7.5 5.13 wca 1.0 1.94 wca 1.0 4.17 wca 1.0 11.03

Arg+
lj 1.2 6.66 wca 1.0 6.66 lj 6.5 4.17 lj 2.0 4.52 wca 1.0 4.17 wca 1.0 13.71

Asn lj 1.1 6.21 wca 1.0 7.45 lj 7.5 3.86 wca 1.0 3.01 wca 1.0 3.86 wca 1.0 9.92

Asp0
lj 1.2 6.18 wca 1.0 7.42 lj 6.5 3.84 wca 1.0 1.79 wca 1.0 2.74 wca 1.0 4.93

Asp−
lj 1.2 6.18 wca 1.0 9.27 lj 4.0 5.48 wca 1.0 2.39 wca 1.0 13.7

Cys lj 1.0 6.16 wca 1.0 8.32 lj 7.0 3.82 wca 1.0 1.09 wca 1.0 1.37

Gln lj 1.2 6.45 wca 1.0 7.74 lj 7.5 4.03 wca 1.0 2.50 wca 1.0 4.60 wca 1.0 8.05

Glu0
lj 1.2 6.41 wca 1.0 7.69 lj 7.5 4.00 wca 1.0 2.48 wca 1.0 4.00 wca 1.0 9.14

Glu−
lj 1.2 6.41 wca 1.0 9.94 wca 1.0 5.71 wca 1.0 5.71 wca 1.0 10.28

Gly lj 1.0 5.63 wca 1.0 8.73 lj 4.5 4.44 wca 1.0 4.34 lj 0.7 3.94 lj 0.7 3.94

His lj 1.0 6.23 wca 1.0 9.28 lj 7.5 4.98 wca 1.0 0.60 wca 1.0 4.15 wca 1.0 7.74

Ile lj 1.2 6.61 wca 1.0 9.92 lj 5.5 5.91 wca 1.0 6.73 lj 1.45 3.55 lj 1.5 3.55

Leu lj 1.2 6.61 wca 1.0 10.25 lj 5.5 5.91 wca 1.0 6.73 lj 1.2 3.55 lj 1.2 3.55

Lys0
lj 1.0 6.63 wca 1.0 9.02 lj 7.5 4.39 wca 1.0 1.48 wca 1.0 1.19

Lys+
lj 1.2 6.63 wca 1.0 6.63 lj 6.5 4.15 wca 1.0 2.57 wca 1.0 4.74 wca 1.0 10.67

Met lj 1.0 6.59 wca 1.0 8.96 lj 7.5 4.36 wca 1.0 1.47 wca 1.0 1.18

Phe lj 1.2 6.77 wca 1.0 9.82 lj 7.5 5.46 wca 1.0 6.37 lj 1.1 3.64 lj 1.2 3.64

Pro lj 1.0 6.20 wca 1.0 8.99 lj 7.5 4.95 wca 1.0 0.60 wca 1.0 4.68 wca 1.0 8.25

Ser lj 1.0 5.97 wca 1.0 8.24 lj 5.5 4.22 wca 1.0 1.73 wca 1.0 3.16 wca 1.0 10.01

Thr lj 1.0 6.23 wca 1.0 9.28 lj 7.5 4.98 wca 1.0 0.60 wca 1.0 4.15 wca 1.0 7.74

Trp lj 1.2 6.99 wca 1.0 7.69 lj 7.0 4.15 wca 1.0 1.89 wca 1.0 3.15

Tyr lj 1.2 6.79 wca 1.0 8.15 lj 6.5 4.45 wca 1.0 1.98 wca 1.0 3.65 wca 1.0 4.87

Val lj 1.2 6.42 wca 1.0 10.08 lj 7.0 5.15 wca 1.0 1.87 lj 1.0 3.43 lj 1.0 3.43

Table 6.1: Optimized interaction potentials for all amino acids and lipid bead types: functional form (lj or wca) and
their parameters ǫ [E ] and σ [Å]. Empty fields mean no interaction.
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Figure 6.3: Free energy profiles for the insertion of a single amino acid in a DOPC bilayer:
coarse-grained (red, solid) and atomistic (blue, dashed. From MacCallum et
al. [MBT08].). Part 1/3.
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Figure 6.4: Free energy profiles for the insertion of a single amino acid in a DOPC bilayer:
coarse-grained (red, solid) and atomistic (blue, dashed. From MacCallum et
al. [MBT08].). Part 2/3. Reference data for Gly and His were extrapolated as
described in the text.
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Figure 6.5: Free energy profiles for the insertion of a single amino acid in a DOPC bilayer:
coarse-grained (red, solid) and atomistic (blue, dashed. From MacCallum et
al. [MBT08]). Part 3/3. Reference data for Pro were extrapolated as described
in the text.
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• The sharp drops present in the PMFs of hydrophobic residues (e.g., Ala, Ile, Leu,
Val) can be somewhat difficult to reproduce at the coarse-grained level. The fewer
beads (and types of beads) involved in the reduced representation again seem to
prevent sharp features in PMFs. This is somewhat compensated by providing strong
attractions between these residues and glycerol beads (GL).

Backbone

To reproduce the excluded volume effect between lipids and the protein backbone, purely
repulsive interactions (WCA) were set between all lipid bead types and peptide backbone
particles N, Cα, and C’ with parameters ǫ = ǫbb = 0.02 E (Table 2.3 on page 25) and σ =
σpeptide +σlipid, where σpeptide corresponds to the van der Waals radius of peptide backbone
particles N, Cα, or C’ (see Table 2.3), and σlipid = 3.0 Å represents an average lipid bead
radius.16 While somewhat arbitrary, this parametrization is sufficient to reproduce simple
steric effects.

6.1.4 Parametrization of Glycine, Histidine, and Proline

Due to the lack of atomistic data for residues Gly, His, and Pro, their PMF curves were ex-
trapolated from other amino acids similar in chemical structure or hydrophobicity. Details
of their construction are provided in the next paragraphs. The resulting reference curves
are shown in Figures 6.3, 6.4, and 6.5, as well as the corresponding optimized coarse-
grained curves. Coarse-grained parameters used to reproduce the target data are shown in
Table 6.1.

Glycine

The side chain of glycine contains no heavy atom: it only consists of a single H atom.
The simplest side chain computed atomistically by MacCallum et al. is alanine, which
consists of a single methyl group (see Table 1.1). The contribution of this group to the free
energy profile is estimated by considering valine, which consists of two methyl groups and a
central carbon. Neglecting the impact of the central carbon, we estimate the contribution
of one methyl group by subtracting the PMF of alanine from the PMF of valine. Then,
we subtract this quantity from the PMF of alanine in order to obtain an estimate for the
PMF of glycine

FGly(z) = FAla(z)− (FVal(z)− FAla(z))

= 2FAla(z)− FVal(z). (6.3)

A simple propagation of uncertainty (see Technical Point 6.1 for a derivation; we neglect
cross-correlations between Ala and Val) leads to an expression for the z-dependent standard

16The radius of a lipid bead can be estimated from the radial distribution function describing its
interaction with itself (e.g., CH–CH).
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deviation of the PMF of glycine, σGly(z), as a function of the standard deviations of F (z)
for alanine σAla(z) and valine σVal(z):

σGly(z) =
√

4σ2
Ala(z) + σ2

Val(z). (6.4)

The resulting target curve (with error bars) is shown in Figure 6.4. Interaction param-
eters for the coarse-grained curve are reported in Table 6.1; the resulting coarse-grained
PMF is shown in Figure 6.4.

One may wonder how accurate these results are, considering the PMF of glycine does
not extend beyond ±1 E : is the abovementioned estimate (i.e., using the PMFs of alanine
and valine) accurate within 1 E? Alternatively, one could argue against any interaction
between a glycine side chain and the different lipid beads, since a glycine side chain is only
composed of one hydrogen atom (implying weak interactions and a small van der Waals
radius).17 Either way, the resulting PMF ought to show few features and is unlikely to
play a major role in the presence of other amino acids.

Proline

The PMF of proline is estimated from its hydrophobicity, rather than chemical struc-
ture as above. For consistency with the peptide-peptide side-chain interactions, we fol-
low the hydrophobicity scale derived in chapter 2. This normalized scale reduces the
20 × 20 Miyazawa-Jernigan matrix [MJ96] into a set of 20 interaction parameters ǫi
that approximately recreate all interactions using the Lorentz-Berthelot mixing rule (see
Table 2.2). The normalized hydrophobicity of proline (ǫ′i = 0.14) is located between glu-
tamine (ǫ′i = 0.13) and threonine (ǫ′i = 0.16). Figures 6.3 and 6.5 show that glutamine
and threonine have very similar PMF curves. We interpolate these curves to estimate the
PMF of proline by weighting them according to the normalized hydrophobicities

FPro(z) =
2

3
FGln(z) +

1

3
FThr(z). (6.10)

Error bars are calculated, as before, using propagation of uncertainty from the error bars
of FGln and FThr:

σPro(z) =

√
4

9
σ2

Gln(z) +
1

9
σ2

Thr(z). (6.11)

The resulting target curve (with error bars) is shown in Figure 6.5. Interaction param-
eters for the coarse-grained curve are reported in Table 6.1; the resulting coarse-grained
PMF is shown in Figure 6.5.

Histidine

Like proline, the PMF of histidine is estimated from its hydrophobicity. We compare His
with other hydrophilic amino acids of similar normalized hydrophobicity parameters ǫ′i

17Recall that the glycine side chain is not modeled in the original protein model (chapter 2).
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6.1 Force-field cross-parametrization

Technical Point 6.1 Propagation of uncertainty

The following derivation estimates the uncertainty of a function based on the errors of its
variables [Mey92]. Consider the distribution function Y = f(X) where f(·) is some known
function and the distribution of the random variable X is known. By Taylor expanding Y
about the mean X = µX , one gets

Y ≈ f(µX) +
∂f

∂X

∣∣∣∣
X=µX

(X − µX). (6.5)

The first and second moments of Y can then be determined

µY = E [Y ] ≈ E

[
f(µX) +

∂f

∂X
(X − µX)

]
= f(µX), (6.6)

σ2
Y = E

[
(Y − µY )2

]
≈ E

[{
∂f

∂X
(X − µX)

}2
]

=

(
∂f

∂X

)2

E
[
(X − µX)2

]
=

(
∂f

∂X

)2

σ2
X . (6.7)

Now consider the corresponding multidimensional problem of a distribution function Y
with n different random variables Xi: Y = f(X1, X2, . . . , Xn). A similar Taylor expansion
will yield

Y ≈ f(µ1, µ2, . . . , µn) +
n∑

i=1

[
∂f

∂Xi

(µ1, µ2, . . . , µn))

]
(Xi − µi). (6.8)

As before, the first moment will only consist of the constant f(µ1, µ2, . . . , µn). The second
moment yields

σ2
Y = E

[
(Y − µY )2

]
≈ E

[
∑

i

∂f

∂Xi

(Xi − µi)
∑

j
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2 +

∑

i

∑

j 6=i
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]
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(
∂f

∂Xi

)2

E
[
(Xi − µi)

2]+
∑

i6=j

∂f

∂Xi

∂f

∂Xj

E [(Xi − µi) (Xj − µj)]

=
∑

i

(
∂f

∂Xi

)2

σ2
i +

∑

i6=j

∂f

∂Xi

∂f

∂Xj

σij. (6.9)

σij corresponds to the covariance of the random variables Xi and Xj. This term vanishes
when the variables are uncorrelated.

Assuming the distribution function is of the form g = αa + βb, the second moment will
yield σ2

g = α2σ2
a + β2σ2

b + 2αβσab.
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Figure 6.6: PMF height at origin F (z = 0) as a function of the normalized hydropho-
bicity parameter ǫ′i (defined in chapter 2) for several hydrophilic amino acids.
PMF heights determined from the atomistic simulations of MacCallum et al.
[MBT08]. Vertical line marks the hydrophobicity of histidine. Dashed line is
a linear fit to the different residues. The intersection between the fit and the
vertical line shows the estimate for histidine.

(shown in Table 2.2): Asn, Ser, Gln, Thr, and Tyr. These curves all show the same overall
shape: a repulsive (F > 0) range around the lipid tails, followed by a dip in the interfacial
region, and finally a peak around the head groups. Differences between these curves mostly
arise from vertical shifts—especially at the origin (i.e., F (z = 0)). In Figure 6.6 we show
the relationship between F (z = 0) and the normalized hydrophobicity parameter ǫ′i for the
abovementioned hydrophilic side chains. The vertical line marks the value of ǫ′i for His.
A linear fit to the five other hydrophilic residues is represented by the dashed line (this
assumes a linear relationship between hydrophobicity and free energy of insertion at the
bilayer midplane, F (z = 0)). The intersection between the two lines is our estimate of the
PMF height for histidine. Note that FHis(z = 0) ≈ FThr(z = 0). This is in good agreement
with the PMFs of His and Thr derived from the Martini force field [MKP+08]. From lack of
further data, we use the same free-energy profiles for His and Thr, i.e., FHis(z) = FThr(z).

6.1.5 Structure and energetics between residues and the bilayer

At this point, we briefly discuss two specific properties of lipid-residue interaction, namely
(i) the presence of water defects due to charged residues and (ii) the protonation of ion-
izable residues as a function of bilayer depth.
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6.1 Force-field cross-parametrization

(a) (b)

Figure 6.7: (a) Coarse-grained configuration of Arg+ (blue sphere) in a DOPC bilayer (thin
lines: hydrocarbon tails; licorice: head groups). The insertion of Arg+ creates
a strong, local deformation of the bilayer. (b) Atomistic configuration of Arg+

in a DOPC bilayer. Reprinted from Biophysical Journal, 94, J. L. MacCal-
lum, W. F. D. Bennett, and D. P. Tieleman, Distribution of amino acids in
a lipid bilayer from computer simulations, 3393–3404, Copyright (2008), with
permission from Biophysical Society [MBT08].

Water defects in a solvent-free model

The partitioning of polar and charged residues into the hydrocarbon region of the bilayer
have been associated with large water defects (e.g., [MRMT04, FTvHW05, MBT08]; see
Figure 6.7 (b)). MacCallum et al. observed the stabilization of narrow pores that allow
water molecules to interact with a polar/charged residue. Their simulations suggest that
such a water channel persists even when a charged Arg residue is located in the bilayer
midplane [MBT08].

The coarse-grained simulations show that Arg+ strongly deform the bilayer locally
(Figure 6.7). The layering of the lipids is strongly perturbed because the residue interacts
more favorably with the lipid head groups than the hydrocarbon tails (see Figure 6.3).
Overall, we observe a localized thinning of the bilayer.18

Ionizable residues

As mentioned before, ionizable residues Arg, Asp, Glu, and Lys can be found in either
charged or neutral form of their acid-base pairs. Classical simulations do not allow for
the explicit modeling of proton exchange between chemical species. Only one of the two

18It is quite remarkable that such an effect be present without explicit electrostatics.
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conjugates is simulated, chosen by their relative population (i.e., the pKa) in a given
environment. pKa values of these residues in bulk water are reported in Table 1.2 on page
3. MacCallum et al. have calculated the z-dependence of these pKa values (Figure 6.8).
These results were calculated from the PMFs presented in their paper (shown here in
Figures 6.3, 6.4, and 6.5). Using a thermodynamic cycle, they calculated the free energy of
protonation as a function of depth in the membrane from the PMFs and the pKa of each
side chain in bulk water (see Technical Point 6.2). Figure 6.8 shows that

• Asp and Glu remain charged until they reach a bilayer depth z ≈ 20 Å.

• Lys becomes neutral very close to the membrane center (z < 4 Å).

• the pKa of Arg remains above 7.0 over the entire bilayer except in the close vicinity
of the membrane center. At this point, its value (≈ 7.0) suggests that the residue
might remain charged.19

Overall, these provide guidelines as to which protonation state should be selected provided
the depth of an amino acid in the bilayer. Due to the lack of reference data, His will
systematically be modeled as neutral in the coarse-grained simulations.

6.2 Simulations of transmembrane helices

In the following, we perform simulations of several transmembrane proteins and compare
them with either experimental or atomistic data. To do so, we first need to model the N-
and C-termini that are present at the ends of a protein. While this issue should have been
addressed in the presentation of the coarse-grained protein model (chapter 2), their effects
on the conformations sampled is rather limited—the termini are thus usually neglected in
coarse-grained peptide models parametrized in an aqueous environment. However, these
termini may play an important role for transmembrane proteins for which most amino
acids are hydrophobic, but the termini are either polar or charged. This scenario ensures
that the protein is integral to the membrane, i.e., it spans the bilayer thickness (rather
than “dive” inside the membrane if all amino acids were hydrophobic). Common examples
of N- and C-termini include the acetyl and n-methyl amide groups, respectively (Figure 6.9
(e) and (f)). Similarly, Figure 6.9 (d) represents the chemical structure of a C-terminal
phenylalaninol found in the helix-forming alamethicin peptide [TSB99].

Because there exist different kinds of N- and C-termini, and because we are only inter-
ested in reproducing their “hydrophilicity,” we model these groups in a very simple way:
both N- and C-termini are represented by an entire amino acid. In particular:

• They are parametrized as Gly residues (i.e., no heavy atom on the side chain; see
chapter 2) in terms of peptide-peptide interactions. This provides flexibility in the
backbone, while preventing side chain–side chain interactions.

19As mentioned previously, the presence of charged residues in the membrane center can be explained
by stabilizing water defects (e.g., [MRMT04, FTvHW05, MBT08]).
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6.2 Simulations of transmembrane helices

Technical Point 6.2 Thermodynamic cycle for pKa calculation in the bilayer

The free energy of pro-
tonation inside the bilayer
∆GAcid→Base, Membrane is calcu-
lated using the thermodynamic
cycle shown here. The upper and
lower branches correspond to the
free energy difference between a
residue (either charged or neutral)
in water and in the membrane, as
given by the PMFs in Figures 6.3,
6.4, and 6.5. The last branch—on
the right—describes the free en-
ergy of protonation in bulk water
∆GAcid→Base, Water. Its value can be
obtained from the pKa in water (see
Table 1.2). The following derivation
provides the relationship between
pKa and free energy difference
∆GAcid→Base.

Reprinted from Biophysical Journal, 94, J. L. MacCallum,
W. F. D. Bennett, and D. P. Tieleman, Distribution of

amino acids in a lipid bilayer from computer simulations,
3393–3404, Copyright (2008), with permission from Bio-
physical Society [MBT08].

By definition, the pKa is a logarithmic measure of the acid dissociation constant Ka:
pKa = − log10Ka, where

Ka =
[A−][H+]

[AH]
. (6.12)

pH is associated with the quantity − log10[H
+] (strictly speaking, pH is defined by the

activity of hydrogen ions) while the free energy ∆GAcid→Base is given by

∆GAcid→Base = −kBT ln

(
[A−]

[AH]

)
. (6.13)

Finally, we obtain

pKa =
1

kBT ln 10
∆GAcid→Base + pH, (6.14)

which is equivalent to the Henderson-Hasselbalch equation [GG08].
Equation 6.14 can easily be inverted to express ∆GAcid→Base as a function of pKa. Given

pKa values for each side chain in water (Table 1.2), one can calculate ∆GAcid→Base, Water.
The thermodynamic cycle shown in the figure illustrates that the free energy of protonation
inside the bilayer is given by

∆GAcid→Base, Membrane = −∆GTransfer, Acid + ∆GAcid→Base, Water + ∆GTransfer, Base. (6.15)

Using Equation 6.14 once more provides the pKa of all ionizable residues at any depth z
in the bilayer. The results are shown in Figure 6.8.
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6 Protein-Lipid Interactions

Figure 6.8: pKa of ionizable residues as a function of bilayer depth z. pKa values at large
z (bulk water) correspond to the values reported in Table 1.2. Reprinted from
Biophysical Journal, 94, J. L. MacCallum, W. F. D. Bennett, and D. P. Tiele-
man, Distribution of amino acids in a lipid bilayer from computer simula-
tions, 3393–3404, Copyright (2008), with permission from Biophysical Society
[MBT08].
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Figure 6.9: Chemical structures of (a) alanine (Ala), (b) α-aminoisobutyric acid (Aib)
[IBKS01, TSB99], (c) phenylalanine (Phe), and (d) C-terminal phenylalani-
nol (Phol) [TSB99] residues, and (e) acetyl and (f) n-methyl amide groups.
Squiggly lines represent the peptide bonds connecting neighboring amino acids.

• All protein-lipid interactions (i.e., between the terminus’ side chain and all lipid
bead types) are parametrized as repulsive. WCA potentials are used with strength
ǫ = 1.0 E and radius σ = 4.0 Å. This imprints enough hydrophilicity in these termini,
as can be seen in its PMF (Figure 6.10). While this choice of parametrization may
seem arbitrary, we note that (i) the lack of reference PMF data prevents a proper
optimization of the potentials and (ii) commonly used acetyl and n-methyl amide
groups are charged at neutral pH [FP02]. While these groups might neutralize upon
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6.2 Simulations of transmembrane helices

insertion into the bilayer, the atomistic PMFs of charged amino acid side chains from
MacCallum et al. [MBT08] all display very large free energy barriers (≈ 20−25 kBT ).
On the other hand, the PMF of our coarse-grained N- and C-termini shows a much
smaller barrier (≈ 7 E), which suggests a reasonable parametrization considering that
it is repulsive enough to keep transmembrane helices integral to the membrane (see
below).

• The presence of extra amino acids at the ends of the chain has an impact on the
number of groups that can form hydrogen bonds: recall from chapter 2 the multi-
body nature of the hydrogen-bond potential (Equation 2.8 on page 24)—the very first
amide group and very last carbonyl groups of a protein chain cannot form hydrogen
bonds due to a lack of neighboring backbone beads. The presence of amino-acid-like
N- and C-termini allows the formation of hydrogen bonds for all groups along the
chain except for the amide and carbonyl groups of the N- and C-termini, respec-
tively.20

While it would certainly be possible to refine this model depending on the chemical struc-
ture of a given terminus, this parametrization has proven successful in keeping hydrophobic
transmembrane helices stably oriented. We have found that fine-tuning the parameters of
the WCA potentials (i.e., strength of the repulsion) did not affect the equilibrium results
presented below in any qualitative way (data not shown).21 Of course, the proper tuning
of these termini would be essential to accurately reproduce the free energy of insertion of
transmembrane proteins.

6.2.1 Fluctuations in and out of the bilayer

A peptide that folds into an α-helix both in water and in the membrane will likely not have
the same flexibility in the two environments: the free energy of breaking a peptide-peptide
hydrogen bond is higher in the membrane because there are no available hydrogen-bond
donors/acceptors in the apolar solvent. One thus expects a helix to be stiffer in the mem-
brane. This is indeed what was observed from atomistic simulations for alamethicin (Alm),
a channel-forming, fungal peptide (Tieleman et al. [TSB99]; sequence shown in Table 6.2):
root-mean-square fluctuations22 (RMSF) of the helix in water and a POPC bilayer (re-
produced in Figure 6.11; denoted “water AA” and “membrane AA,” respectively) clearly

20The addition of these N- and C-termini in the coarse-grained simulations has allowed to significantly
reduce artificial fluctuations at the two ends of the chain (data not shown).

21Surely the free energy of insertion of these termini will have an impact on the kinetics of insertion of
transmembrane proteins.

22The root-mean-square fluctuation

√
∆r2

i measures the deviation of particle i with respect to its
average position, averaged over time:

∆r2
i =

1

Nt

Nt∑

k=1

(ri(tk)− ri)
2
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Figure 6.10: Free energy profile for the insertion of a coarse-grained N- or C-terminus side
chain in a DOPC bilayer.

Name Sequence
Alamethicin APAAA AQAVA GLAPV AAEQF

WALP16 GWWLA LALAL ALAWW A

WALP23 GWWLA LALAL ALALA LALAL WWA

WALP27 GWWLA LALAL ALALA LALAL ALALW WA

Table 6.2: Amino acid sequences of alamethicin and several WALP peptides. Underlined
amino acids are non-natural: A and F refer to α-aminoisobutyric acid and
C-terminal phenylalaninol, respectively (e.g., [TSB99, IBKS01]; Figure 6.9).
All sequences form transmembrane helices [TSB99, MKP+08, KI10]. The N-
terminus and C-terminus of each peptide is blocked by an acetyl and n-methyl
amide groups, respectively (except alamethicin, for which the C-terminus is em-
bedded in the last phenylalaninol).

make the point. One wonders, though, whether the same should hold at the coarse-grained
level:

• The strength of the hydrogen-bond interaction ǫhb was parametrized to reproduce
the structure of helical proteins in water (see section 2.4 on page 31). This strongly
suggests the need for a reparametrization of ǫhb in a membrane environment (the
value would likely go up to reproduce the abovementioned change in free energy).

with ri =
∑Nt

k=1 ri(tk)/Nt, which corresponds to a time average over Nt measurements, and ri(tk) is the
position of atom i at time tk [Kuc96]. Here, we calculate the fluctuations of a residue by monitoring its
Cα position after alignment (i.e., translation and rotation) of all snapshots with a reference conformation.
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Figure 6.11: Root-mean-square fluctuations of alamethicin in water and in a POPC bilayer
(denoted “membrane”). “AA” and “CG” correspond to atomistic and coarse-
grained simulations, respectively. Atomistic data reproduced from Tieleman
et al. [TSB99].

• This coarse-grained model couples an implicit-water solvent with an explicit-membrane
environment. The associated change in terms of sterics—and thus fluctuations—is
difficult to predict.

In the following, we repeat the simulations of Tieleman et al. using the present coarse-
grained model.

Table 6.2 indicates that several residues of Alm are not part of the set of the twenty nat-
urally occurring amino acids (Tables 1.1 and 1.2 on pages 2–3), namely α-aminoisobutyric
acid (Aib) and C-terminal phenylalaninol (Phol):23

• Aib is close in structure to Ala. As illustrated in Figure 6.9, Aib contains a methyl
group instead of the Cα-bound hydrogen. It has been shown to promote 310-helix
formation (rather than α-helix for polyalanine) [IBKS01]. The native structure of
Alm, nevertheless, stabilizes to an α-helix. For simplicity, we therefore model Aib
residues as Ala (the coarse-grained simulations correctly stabilized an α-helix in both
water and the membrane; see below).

• Phol incorporates a CH2OH C-terminal group into the backbone of a Phe residue
[TSB99] (Figure 6.9). We parametrize Phol in the simulations as a standard Phe
residue followed by a (generic) coarse-grained C-terminal.24

23Alm is part of a family of fungal peptides that produces nonstandard amino acids [CWN06].
24Recall that we model only one type of terminus in the coarse-grained simulations. See above for more

details on termini modeling.

105



6 Protein-Lipid Interactions

Overall, we believe that the assumptions made here are reasonable considering the level of
resolution of the coarse-grained model, and that such details are unlikely to play a major
role in the resulting RMSF.25

Replica-exchange coarse-grained simulations in implicit water were run at temperatures
kBT/E ∈ {1.0, 1.05, 1.1, 1.2, 1.3, 1.4, 1.6, 1.9} over a total simulation time of 107 τ in each
replica. Initial conformations were randomly selected, and the low temperature replicas
quickly stabilized an α-helix. We extracted the RMSF of the first replica (kBT = 1.0 E) by
discarding the first 2 × 106 τ and splitting the remaining data into two independent sets
(from which we can calculate a mean and standard deviation for each residue). The results
are shown in Figure 6.11 (“water CG”). We note that the corresponding atomistic and
coarse-grained simulations in water agree well considering that no temperature calibration
was applied.26 It isn’t clear why the coarse-grained simulations show enhanced fluctuations
at the ends of the chain (i.e., residues 1–4 and 17–20), compared to the atomistic data: all
backbone-hydrogen bonds are modeled in the coarse-grained system (see above). The peak
around residues 12–15 illustrates the added flexibility due to both Gly11 and Pro14—the
role of proline in the conformation of the helix is explained in detail in Tieleman et al.
[TSB99].

Coarse-grained simulations of Alm in a 72-POPC lipid membrane27 were run at constant
temperature, kBT = E , and zero lateral tension, Σ = 0, for 500 000 τ (see subsection 6.1.1
for more details on the simulation protocol).28 A helical conformation of Alm (sampled
from the previous water simulation) was inserted in an equilibrated lipid bilayer, without
removing lipids. To relax the strong steric clashes due to the insertion of Alm, the peptide
was initially restrained while the lipids were first warmed up, and then evolved freely for
100 τ .29 The peptide was subsequently unrestrained and the production run followed. Alm
did not show any significant change of secondary structure over the entire simulation. Like

25It is worth noting that the atomistic simulation of Tieleman et al. is more than a decade old. Force
fields evolve at a fast rate and one should be careful when relying on “old” simulation data. Here, we
are only interested in the RMSF, a rather coarse-grained order parameter of the system. We assume it
remains robust against small force field inaccuracies.

26The limited transferability of generic coarse-grained models—such as the one presented in chapter 2—
often require a small temperature rescaling of the simulation in order to best reproduce experimen-
tal/atomistic data.

27While the use of a larger membrane would have been beneficial, a smaller system allows for better
statistics. We assume here that the results presented below would not vary significantly by using a larger
number of lipids.

28Kinetic simulations of folding and lateral diffusion for the peptide and lipid models, respectively, both
yielded a speedup factor of 103. Since τ ∼ 0.1 ps for both models [BD09, WD10b], the simulation time
used here roughly corresponds to ∼ 50µs of “real” time.

29While the peptide force field requires an integration time-step δt = 0.01 τ (see chapter 2; [BD09]),
the lipid force field can be run at δt = 0.1 τ [WD10b]. This means that (i) protein-lipid simulations must
be run at the smaller time-step, and (ii) simulations of restrained proteins in a membrane may be run at
the faster time-step. Even though a multiple-time-step algorithm [KPD97] would be appropriate in the
present context, the proper modification of the modified Andersen barostat [KD99] is (up to the author’s
knowledge) still an open question.
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the simulation in water, the RMSF was extracted by discarding the first 100 000 τ and
splitting the remaining data into two data sets. The results, shown in Figure 6.11, agree
remarkably well with the atomistic data of Tieleman et al. [TSB99]. We point out that no
free parameter was tuned to reproduce the atomistic curve.

On the bright side, the results show that the coarse-grained model is robust enough to
reproduce the difference in fluctuations between water and membrane environments, even
though it couples an implicit with an explicit solvent. On the other hand, two very different
processes are strongly contributing to the results: (i) the change in hydrogen-bond strength
in water and the membrane, and (ii) interactions between the peptide and ordered lipid
tails (i.e., nonzero orientational P2 order parameter; this effect is present in the coarse-
grained system [WD10b]) which might help aligning the helix. These contributions are
difficult to disentangle on the basis of the results presented in Figure 6.11 alone. Increasing
the hydrogen-bond strength ǫhb in a membrane environment would likely increase the
fraction of α-helices sampled, since they maximize the number of backbone hydrogen bonds
[PCB51, PE90]. This is in agreement with the observation that most transmembrane
proteins are helical (e.g., [Xio06]). Because the model was parametrized against helical
protein structures, and because β-sheets are, in general, more difficult to stabilize (due to
end effects; see chapter 2), we argue that the coarse-grained peptide force field parametrized
for water is also adequate for the membrane environment.30

6.2.2 Tilt and hydrophobic mismatch

The tilt angle of model transmembrane proteins—an indicator of its orientation relative to
the membrane normal—has recently been the subject of detailed studies in order to better
understand hydrophobic mismatch between lipids and proteins [MB94]. The orientation
of transmembrane WALP peptides, which consists of a hydrophobic stretch of alternating
Leu and Ala bound by two pairs of Trp residues (sequences shown in Table 6.2), was
estimated experimentally from 2H solid-state NMR experiments [ÖRLK05, SÖR+04]. The
results of these authors showed an increase of the tilt angle upon membrane thinning
(i.e., positive hydrophobic mismatch) even though the tilt angle values they measure were
surprisingly small (≈ 5 ◦ for DMPC and DOPC). Atomistic and coarse-grained simulations,
on the other hand, predicted much larger tilt angles (≈ 15 − 30 ◦ for the same lipids)
(e.g., [ÖEKF07, KI10, MTF10, MKP+08]). Özdirekcan et al. showed that the discrepancy
was due to an averaging artifact of the NMR data [ÖEKF07]. Fluorescence spectroscopy
measurements later confirmed the predictions from simulations [HKRM+09].

Coarse-grained simulations of the WALP23 and WALP27 peptides were run in a 72-
POPC lipid bilayer. Constant temperature (kBT = E) and tension (Σ = 0) simula-
tions were performed as above (subsection 6.2.1). Because of the long autocorrelation
time involved in the relaxation of the abovementioned tilt angle—50 000 τ and 70 000 τ for
WALP23 and WALP27, respectively (data not shown)—simulations were run for 2− 3×

30Future simulations may indicate the need for a careful reparametrization of the force field.
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Figure 6.12: (a) Free energy as a function of tilt angle for WALP23 (red) and WALP27
(blue) in POPC. Horizontal lines denote F = 0 and F = 1 E (i.e., thermally
accessible interval). Error bars reflect the variance of the data points (1σ
interval). (b) Representative conformation of WALP23 (thin lines: lipid tails;
licorice: lipid head groups and protein).

106 τ to allow proper sampling.31 The tilt angle was measured from the orientation of the
helical principal axis (as calculated from the gyration tensor) and the unit vector along
the membrane normal. Sampled distributions were inverted into free energies, as shown
in Figure 6.12.32 Error bars were estimated from bootstrap resampling (subsection A.1.6).
The results clearly illustrate the impact of hydrophobic mismatch on the orientations of the
two peptides: WALP27, being longer (i.e., larger positive hydrophobic mismatch), shows a
more pronounced tilt to optimize hydrophobic matching [MB94]. The results are in good
agreement with the atomistic, umbrella sampling simulations of Kim and Im [KI10], who
measured thermally accessible tilt angles in the range 7− 26 ◦ and 14− 46 ◦ for WALP23
and WALP27, respectively, in POPC. While using different lipids, several independent, ex-
perimental and simulation studies point to an average tilt angle of ≈ 15−25 ◦ for WALP23
in DOPC [MTF10, HKRM+09]. Similar results were obtained in DMPC [ÖEKF07, KI10].
While small deviations are observed from one experimental method or simulation force
field to the other, the results presented here are in good agreement with the published
data. This shows that the model is capable of reproducing simple structural aspects of
transmembrane protein orientation and, more generally, hydrophobic mismatch.

31Because of these long autocorrelation times, all-atom standard canonical simulations are unable to
converge the distribution of tilt angles [MKP+08]. The use of more sophisticated sampling techniques,
such as umbrella sampling, seems to alleviate the problem [KI10].

32A quadratic expansion of the WALP23 free energy profile around its minimum, F = 1
2c(α − α0)

2,
where α is the tilt angle, α0 the minimum value, and c the associated modulus, allows to estimate the
restoring torque N = ∂F/∂α exerted by the helix. We find c ≈ 30 E/rad2 (in comparison, bond angles in
the protein model exert a modulus kangle = 300 E/rad2; see Table 2.1 on page 17).
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6.2 Simulations of transmembrane helices

6.2.3 Helix-helix interactions

The aggregation of proteins in, or close to, the lipid bilayer may have important biolog-
ical consequences for the membrane, e.g., membrane-curving proteins and vesicle bud-
ding [BV06, RIH+07], pore formation [OS99]. These phenomena depend not only on
protein-lipid interactions, but also protein-protein interactions in the membrane environ-
ment. The self-association of WALP peptides in model membranes—studied both exper-
imentally and computationally [SAN+05, MKP+08]—provides an appropriate benchmark
to test the coarse-grained force field by studying the distance and crossing (i.e., relative)
angle of WALP dimers.

We simulated WALP23 dimers in a 72-POPC lipid bilayer at constant temperature and
tension. All simulation conditions were the same as above. Two independent simulations,
totaling 106 τ , were run with helical peptides initially placed in parallel, integral to the
bilayer, and at a 13 Å distance of one another. Helix-helix distances were measured from
the centers of mass of the two peptides, while the crossing angle was defined from the angle
between the two helical principal axes. Figure 6.13 shows the free energies as a function
of the helix-helix distance (a) and crossing angle (b) between the two peptides. These
results compare well with atomistic simulations of WALP dimers in DOPC which report
an average distance of 11 Å and angle 15−25 ◦ [SAN+05] for two parallel dimers. Monticelli
et al. performed similar test simulations with the MARTINI force field for the antiparallel
configuration and found an average distance of 7 Å, compared to 8 − 9 Å atomistically
[MKP+08, SAN+05]. The difference in helix-helix distance between parallel and antiparallel
dimers has been argued to stem from dipolar interactions between the two helices—which
should indeed favor antiparallel dipoles (e.g., [Hol85, SAN+05]). Because the present force
field does not model explicit electrostatics, we expect this model not to reproduce this
feature. Indeed, dimer simulations of the antiparallel configuration show that the average
distance and angle (Figure 6.13 (c) and (d)) are virtually identical to the abovementioned
parallel packing scenario. Differences in the shape of the distributions between parallel
and antiparallel packing may be caused by a smaller amount of statistics in the latter case
(only 625 000 τ of simulation time).

6.2.4 Insertion and folding

The ability of the model to fold simple peptides (chapter 2) provides the means to study
interfacial folding and membrane insertion. This approach has been used before on the
WALP peptide using atomistic simulations with implicit [IBI05] and explicit [NWG05]
membrane environments. In both cases, a parallel tempering scheme was applied to im-
prove sampling. In the explicit membrane case, restraining potentials were applied to the
lipid head groups in order to keep the bilayer stable. The results showed that folding is not
required for bilayer insertion (unlike what others have proposed, e.g., [JW89]). Instead, the
unstructured peptide first inserts into the bilayer and then folds into an α-helix. Because
of obvious computational limitations, the system was limited to a short peptide (WALP16;
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F
re

e
en

er
gy

[E
]

11.51110.5109.598.58

3

2.5

2

1.5

1

0.5

0

Crossing angle [◦]

F
re

e
en

er
gy

[E
]

302520151050

3

2.5

2

1.5

1

0.5

0

(a) (b)

(c) (d)

Parallel packing

Antiparallel packing

Figure 6.13: Free energies between two WALP23 peptides in a POPC bilayer as a function
of the helix-helix distance, (a) and (c), and crossing angle, (b) and (d), for
parallel and antiparallel packing, respectively. Horizontal lines denote F = 0
and F = 1 E (i.e., thermally accessible interval). Error bars reflect the variance
of the data points (1σ interval). Helix-helix distance distributions average over
all crossing angles, and vice-versa. The amount of sampling obtained here is
not enough to produce two-dimensional free energy surfaces as a function of
both helix-helix distance and crossing angle.
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6.2 Simulations of transmembrane helices

Figure 6.14: Insertion and folding of one WALP peptides on a 72-POPC lipid bilayer.
Simulation snapshots recorded at t = 1.5 × 106 τ . Thin lines: lipid tails;
licorice: lipid head groups and protein; orange beads: N- and C-termini.

Table 6.2), a small bilayer (36 DPPC lipids), and 3.5 ns of simulation time. The implicit
membrane simulation, on the other hand, studied various peptides for longer simulation
times (besides, reaching equilibrium was facilitated by the absence of molecular friction in
the membrane environment).

Here, we study the insertion of unfolded WALP23 peptides in a 72-lipid POPC bilayer.
Two independent canonical simulations (same conditions as above) were first run with a
single WALP peptide. Each of them was initially set in an unfolded conformation, placed in
the aqueous environment (i.e., above—but close to—the lipid bilayer). While the peptide
quickly binds to the bilayer, it does not insert easily. Figure 6.14 shows the conformation of
the system after t = 1.5× 106 τ : most of the peptide inserts into the hydrophobic region of
the bilayer33 while the N- and C-termini remain in the lipid head-group region, due to their
hydrophilic nature (Figure 6.10); the other simulation evolved similarly. In comparison
with the average folding time of (AAQAA)3 in an aqueous environment (. 10 000 τ at T =
E/kB; Table 3.1 on page 53), folding in a membrane environment is substantially slowed
down. Neither simulation shows any sign of peptide folding at the membrane interface.
The folding/insertion process is frozen by the free energy barrier of carrying one (N- or
C-)terminus across the bilayer.34

A second set of two simulations were run with four WALP peptides on the same lipid bi-

33Note that Leu and Ala, which make for most of the WALP peptide (Table 6.2), are hydrophobic
residues.

34Obviously, the kinetics of insertion of the N- and C-termini will strongly depend on the associated
PMF (Figure 6.10). A more accurate parametrization of these groups may lower the PMF and the average
insertion time.

111



6 Protein-Lipid Interactions

(a)

(b)

(c)

Figure 6.15: Insertion and folding of four WALP peptides on a 72-POPC lipid bilayer.
Simulation snapshots recorded at t = 50 000 τ (a), t = 450 000 τ (b), and
t = 600 000 τ (c), respectively. Note the increasing deformation of the lower
leaflet of the bilayer. Blue, vertical lines mark the periodic boundaries of
the simulation box (3 identical unit cells are shown). Thin lines: lipid tails;
licorice: lipid head groups and protein; orange beads: N- and C-termini.
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6.2 Simulations of transmembrane helices

layer. As shown in the conformation of one of the simulations at t = 450 000 τ (Figure 6.15),
the higher peptide density provides two key features:

• Intermolecular peptide-peptide interactions tend to favor extended conformations
inside the bilayer. The larger number of neighboring peptide backbone chains seems
to be stabilizing more hydrogen bonds, compared to the one-peptide simulation.
The peptides have an increased tendency to align along the membrane interface.
Nevertheless, the simulations show no sign of helix formation while peptides are
adsorbed on the lipid bilayer.

• The peptides strongly affect the stability of the bilayer. We observe strong displace-
ments of termini-neighboring lipid head groups towards the hydrocarbon region of
the bilayer (see Figure 6.15). These head groups could provide a hydrophilic shell
around a peptide N- or C-terminus across the bilayer, thereby reducing the associated
free energy of penetration (Figure 6.10). Whether properly inserted peptides would
subsequently fold in the membrane remains an open question.

While running longer simulations would ultimately answer these questions,35 the sig-
nificant correlation times involved seem prohibitive. Notice that none of the insertion
simulations presented here showed any sign of helix formation in the membrane, which
suggests inadequate sampling. Helix formation alone might be more easily observed by ini-
tially setting a random coil conformation with its hydrophilic end groups located on each
side of the bilayer. In terms of insertion, an ingenious protocol was recently proposed in
which peptides are initially placed in a random dispersion of lipids, and stabilize either in or
out of the self-assembling bilayer [EMS07]. Averaged over many simulations, this method
allows to calculate the ratio of surface-bound vs. transmembrane proteins [MKP+08]. The
kinetics of insertion might be best probed by the use of sophisticated techniques such
as transition path sampling [BCDG02] or forward-flux sampling [AWtW05]. In terms of
thermodynamic properties, parallel tempering has shown valuable for protein-lipid sys-
tems (e.g., [NWG05]), even though the use of restraining potentials for the bilayer is likely
to prevent potentially informative membrane deformations (see Figure 6.15). Finally, an
elegant solution might be the use of Hamiltonian replica exchange molecular dynamics
(HREMD) [BD00]. While similar in spirit to parallel tempering, HREMD only decouples
the important degrees of freedom (rather than all of them—through the temperature). One
could imagine a scheme in which the protein-lipid interactions are successively lowered: the
first replica would represent the original Hamiltonian, whereas proteins and lipids would
not interact with one another in the last one. This scheme remains to be implemented in
the present context.

35But then, how long is long enough?
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Conclusions

The formation of structure in protein molecules was investigated using coarse-grained simu-
lations. The level of resolution of the model—which allows to capture local conformations—
is able to fold simple peptides without any primary sequence dependent bias, while gaining
much computational efficiency compared to atomistic models. The model was first ap-
plied to various biophysical problems: kinetics of folding, protein folding cooperativity,
and amyloid aggregation. In the last chapter, the peptide model was cross-parametrized
with a high-resolution, solvent-free coarse-grained lipid model in an attempt to study the
interactions of proteins with the lipid membrane.

One recurring question associated with the development and use of a coarse-grained
model concerns its range of applicability and accuracy. The set of assumptions that are
put in the model (or, in general, any theory) must be compatible with the problem at
hand. For instance, it would be inconceivable to use the present peptide model to study
hydrodynamic properties of proteins, side-chain hydrogen bonding, or electrostatics. In
terms of accuracy, the success of a coarse-grained model will rely on the judicious choice and
parametrization of its degrees of freedom. It can then be tested against simple scenarios
for which the result is known, before applying the model to new problems. It is worth
noting that the proper sampling of a potentially inaccurate coarse-grained simulation still
provides a falsifiable—and thus scientific—result. On the other hand, the corresponding
atomistic simulation may only allow for very poor statistics (for large systems), overall
providing uncontrolled errors.

Clearly, the goal of biophysics is to shed light on biological phenomena using physics-
related tools (e.g., statistical mechanics, thermodynamics). The author hopes that the
present thesis complies with this objective, at least partially. Certainly, the physics in-
volved is interesting in its own right. For instance, detailed mechanisms of protein folding
cooperativity were clearly identified using a microcanonical analysis (chapter 4), a tech-
nique which originated from the thermodynamic analysis of finite-size transitions. These
are very exciting times for biophysics: recent technological advancements in terms of ex-
perimental resolution and computational capabilities are rapidly closing the gap (i.e., ex-
perimental techniques can resolve finer details while simulations reach longer time- and
length-scales) to provide an unprecendented amount of insight and understanding.
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A Histogram Reweighting Techniques

A.1 Formalism

The output data of computer simulations (e.g., Monte Carlo, molecular dynamics) consists
of trajectories of the system studied. These may then be analyzed in terms of time or
ensemble averages of various observables. Both types of averages will coincide assuming (i)
sufficient sampling and (ii) ergodicity: observing a process for a long time is equivalent to
sampling many independent realizations of the same process.1 The calculation of statistical
quantities is often characterized by the determination of moments Xn of the (unknown)
underlying distribution function pX . For instance, the Binder cumulant allows to locate
the critical point of a statistical system from ratios of moments. In the case of the Ising
model with zero external field, the Binder cumulant is obtained from the second and fourth
moments of the magnetization [Bin81]. Rather than characterizing a distribution through
its moments, more recent developments aims to determine the distribution itself, namely
by sampling suitable histograms. The present chapter summarizes important concepts
underlying so-called histogram reweighting techniques and provides implementation details
of several algorithms.

A.1.1 Estimators and distribution functions

We consider the simulation of a system at constant temperature T . While all microstates
have equal weight(s) in the microcanonical ensemble, their weight in the canonical ensemble
is proportional to the Boltzmann factor exp(−βE), where β = 1/kBT . The calculation
of the expectation value of any observable Q at inverse temperature β can formally be
expressed as

〈Q〉(β) =

∑
µQµe−βEµ

∑
µ e−βEµ

, (A.2)

1For a random variable X with probability density pX , the ergodic theorem [Pet83] implies for the nth

moment of X:

E[Xn] = lim
T→∞

1

T

∫ T

0

dt xn(t) =

∫
∞

−∞

dx xnpX(x), (A.1)

where the first and second integrals describe a time and ensemble average, respectively. Molecular dynam-
ics simulations numerically integrate equations of motion, thus providing a time average. Monte Carlo
simulations rely on a Markov process to draw configurations from a predefined probability density—they
also generate a time average even though the trajectories may contain unphysical moves [NB99].
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where the sums run over all microstates µ of the system, and 〈·〉 corresponds to a canonical
average.2 The expectation value is expressed as the average over all Qµ weighted by the
Boltzmann factor. The denominator in Equation A.2 is called the (canonical) partition
function of the system. Explicitly calculating 〈Q〉 by summing over all microstates is only
tractable for very small systems.

In larger systems, the calculation of the average must be restricted over a subset of
states {µ1, . . . , µM}. This introduces a new distribution function pµ which specifies the
probability with which a state µ is picked during sampling. The quantity

Q(M)(β) =

∑M
i=1Qµi

p−1
µi

e−βEµi

∑M
j=1 p

−1
µj

e−βEµj

(A.3)

is an estimator of 〈Q〉. Its properties include (i) absence of bias, such that the error between
an ensemble average over Q(M) and the parameter being estimated, 〈Q〉, is zero, (i.e.,
〈Q(M)〉 = 〈Q〉), and (ii) consistency, where the estimator converges in probability to 〈Q〉
(i.e., limM→∞Q(M) = 〈Q〉) [Sha03, NB99]. Unlike Equation A.2, the sum in Equation A.3
does not run over all microstates but only over sampled microstates.

It is important to distinguish between the Boltzmann factor—inherent to any canonical
sampling—and pµ, which is an artificial property used to estimate Equation A.2. The
distribution pµ can therefore be freely chosen.3 It is often set equal to the Boltzmann
factor such that Equation A.3 reduces to

Q(M)(β) =
1

M

M∑

i=1

Qµi, β, (A.4)

where Qµi, β corresponds to observables sampled canonically at inverse temperature β.
However, many methods rely on a cleverer choice of this distribution function to enhance

statistical sampling, such as several equilibrium and non-equilibrium free energy calcula-
tion techniques (e.g., Umbrella sampling [TV77], Multicanonical [BN91] and Wang-Landau
[WL01], Adaptive Biasing Force [DP01], and Metadynamics [MLP04]). Alternatively, set-
ting pµ to the Boltzmann factor may be used to estimate properties of the system at a
different state point than the one used in the simulation. This forms the basis of the single
and multiple histogram methods presented next.

A.1.2 The single histogram method

The single histogram method, introduced by Ferrenberg and Swendsen [FS88], exploits
the abovementioned duality between the distribution function that describes the thermo-
dynamic state point (e.g., Boltzmann factor in the canonical ensemble) and the sampling

2Here we mostly follow the notation of Newman and Barkema [NB99].
3Practically, imposing a probability distribution function pµ in a simulation is not necessarily trivial.

While Monte Carlo simulations provide a direct control of the acceptance criterion (e.g., pµ = exp(−βE)
corresponds to the Boltzmann factor as proposed in the original Metropolis algorithm), molecular dynamics
requires the expression of pµ into biasing forces.
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scheme. The key concept in the method is that Equation A.3—which provides the exact
value of 〈Q〉 at inverse temperature β in the limitM →∞ [NB99]—contains a large amount
of information about the expectation value of Q at a neighboring inverse temperature β′.4

Using Equation A.3 we formulate an expression for the estimator of 〈Q〉 sampled at inverse
temperature β (i.e., pµ ∝ exp(−βE)) but analyzed at a neighboring inverse temperature
β′ as

Q(M)(β′) =

∑M
i=1Qµi, β e−(β′−β)Eµi

∑M
j=1 e−(β′−β)Eµj

. (A.5)

While Equation A.5 represents the most fundamental equation of the single histogram
method, it is best illustrated by replacing the instantaneous measurements recorded during
the simulation (i.e., Qµi, β) by histograms. We present the special case where the observable
is the energy (or one of its derivatives). The equation can be written (for limM→∞)

〈E〉(β′) =

∑
E E H(E; β)e−(β′−β)E

∑
E H(E; β)e−(β′−β)E

, (A.6)

where H(E; β) is the histogram of the energies of the states sampled at inverse temperature
β. Since evidently H(E; β) ∝ Ω(E) exp(−βE), where Ω(E) is the density of states, we see
that Equation A.6 can also be written as:

〈E〉(β′) =

∑
E E Ω(E)e−β′E

∑
E Ω(E)e−β′E

. (A.7)

It becomes clear that Equation A.6 divides the Boltzmann factor exp(−βE) from H(E; β)
in order to estimate the density of states Ω(E) alone, which is then multiplied by exp(−β′E)
to reweight the overall distribution at inverse temperature β′.

A few remarks on the method must be made at this point:

• it is possible to estimate how far in temperature difference the single histogram
method will yield reasonable results. Obviously, only regions which were significantly
sampled (H(E; ·)≫ 1) can be reweighted (see [NB99] for more details),

• the single histogram method not only provides an analytic expression for the average
energy 〈E〉 at a neighboring temperature, any derivative can be calculated analyt-
ically (i.e., without requiring numerical differentiation) because Equation A.6 is a
sum of ratios of exponentials, and derivatives of exponentials merely bring additional
multiplicative factors (i.e., exp(u)′ = u′ exp(u)). This proves useful in a variety of
scenarios, e.g., calculating the temperature at which the specific heat curve peaks.

4The method is readily applicable to any other intensive parameter such as pressure or chemical
potential. Here we use temperature as a didactic example.
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A.1.3 The multiple histogram method (also known as WHAM)

The single histogram method is based on the estimation of the density of states Ω(E) from
canonical energy histograms H(E), where H(E) ∝ Ω(E) exp(−βE). Reweighting the
histograms to neighboring temperatures is naturally limited by the width of the histogram
itself. In order to extend the method to wider energy intervals, a näıve approach would
consist of performing several simulations with overlapping histograms Hi(E) such that
Hi(E) ≫ 1 for any E within an interval of interest. This method is suboptimal, in the
sense that it does not take advantage of overlapping data: the density of states at an
energy E significantly sampled by more than one simulation will be evaluated using only
one histogram. One can intuitively recognize that complementary information is contained
in overlapping histograms. Weighted averages of single histogram extrapolations have
shown to be error-prone [NB99]. Rather than patching together individual estimates of
the density of states, the error can be greatly minimized by setting up a framework in
which all histograms contribute to the estimation of the same density of states (i.e., Ω(E)
depends only on the system, and not on the temperature at which it is studied) such that
the error of the estimated density of states is minimized.5 This framework consists of a
minimum variance estimator for the density of states, coined multiple histogram method
in the physics literature [FS89] and Weighted Histogram Analysis Method (WHAM) in the
“bio” community [KRB+92]. We skip the derivation of the method which can be found
elsewhere, e.g., Newman and Barkema [NB99], Ferrenberg and Swendsen [FS89], Kumar
et al. [KRB+92], Souaille and Roux [SR01], Bartels and Karplus [BK98].

For a set of R simulations at different inverse temperatures βi, each of which sampled
an energy histogram Hi(E; βi) with Ni data points, the estimator for the density of states
yields6

Ω(E) =

∑
iHi(E; βi)∑

j Nje−βjE−fj
. (A.8)

where fj = −βjFj = lnZj is the (unknown) scaled free energy of simulation j (Fj is the
free energy and Zj its partition function). These quantities can be determined iteratively
by simple definition of the partition function

efk = Zk =
∑

E

Ω(E)e−βkE =
∑

E

∑
iHi(E; βi)∑

j Nje(βk−βj)E−fj
. (A.9)

Having thus determined the fj, the partition function7 Z can now be evaluated at any

5The best estimate of Ω(E) is obtained by weighing each individual contribution (i.e., simulation)
according to the number of samples in the corresponding histogram at that energy [NB99].

6Here we will neglect terms describing the correlation between data points gi = 1 + 2τi, where τ is the
auto-correlation time. Because every histogram Hi gets multiplied by an associated term gi, it is easy to
see that all of them cancel when they are equal (this is, in general, not true).

7This quantity does not correspond to the true partition function of the system because one never
exhaustively samples all of phase space. It rather indicates its value relative to the other simulations.
Such an offset factor in the partition function is, of course, irrelevant when calculating thermodynamic
observables.
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interpolating temperature

Z(β) =
∑

E

∑
iHi(E; βi)∑

j Nje(β−βj)E−fj
, (A.10)

and provide continuous approximations to canonical averages for any sampled observables.
Moreover, the scaled free energies fj = lnZj give access to the density of states, as shown
in Equation A.8. From the density of states, any thermodynamic quantity can now be
calculated using a microcanonical description (i.e., the energy E is a control parameter).8

Consider now the canonical interpolation of an observable Q (i.e., expectation of Q at
various temperatures). The evaluation of 〈Q〉(β) will rely on the calculation of the prob-
ability distribution p(Q) ∝ ∑E Ω(E,Q) exp(−βE),9 where Ω(E,Q) is a two-dimensional
density of states. Following Equation A.8, Ω(E,Q) may be evaluated from a series of
two-dimensional histograms Hi(E,Q; βi) at different temperatures

Ω(E,Q) =

∑
iHi(E,Q; βi)∑
j Nje−βjE−fj

. (A.11)

The evaluation of 〈Q〉(β) would then require sums over both E and Q:

〈Q〉(β) =
1

Z(β)

∑

Q

∑

E

QΩ(E,Q)e−βE (A.12)

=
1

Z(β)

∑

Q

∑

E

Q

∑
iHi(E,Q; βi)∑

j Nje−(β−βj)E−fj
. (A.13)

It is straightforward to rewrite Equation A.13 in terms of the instantaneous (sampled)
states s during the ith simulation, rather than the histograms Hi(E,Q; βi), such that

〈Q〉(β) =
1

Z(β)

∑

i,s

Qi,s∑
j Nje(β−βj)Ei,s−fj

. (A.14)

Avoiding the explicit use of histograms (and their inherent binning artifacts) is especially
useful when dealing with continuous spectra (e.g., E and Q). As a practical example, the
calculation of the average energy 〈E〉 at inverse temperature β is given by

〈E(β)〉 =
1

Z(β)

∑

i,s

Ei,s∑
j Nje(β−βj)Ei,s−fj

. (A.15)

Likewise, the canonical specific heat is easily obtained using moments of the energy distri-
bution, CV (β) = kBβ

2(〈E2〉 − 〈E〉2):

CV (β) =
kBβ

2

Z(β)




∑

i,s

E2
i,s∑

j Nje(β−βj)Ei,s−fj
−
(
∑

i,s

Ei,s∑
j Nje(β−βj)Ei,s−fj

)2


 . (A.16)

8Such an approach is used in chapter 4 to study thermodynamic aspects of protein folding cooperativity.
9p(Q) ∝

∫
dE Ω(E,Q) exp(−βE) for continuous energy spectra.
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Finally, the multiple histogram method gives access to free energies as a function of any
parameter Q at inverse temperature β (this is often referred to as a potential of mean force,
or PMF). This can easily be derived by noting that the canonical probability density as a
function of Q will only select conformations for which Qi,s = Q, such that

F (Q) = −β−1 ln p(Q) = −β−1 ln

[
1

Z(β)

∑

i,s

δ(Q−Qi,s)∑
j Nje(β−βj)Ei,s−fj

]
. (A.17)

This equation requires a binning of the variable Q within the interval over which the free
energy will be calculated.

A.1.4 Optimized convergence of the free energies

The iterative convergence of the set of free energies fk described in Equation A.9 may
become slow for large systems (though it always converges exponentially). An alternative
solution focuses on the free energy difference between neighboring histograms [BS09]. It is
straightforward to show from Equation A.9 that a system consisting of only two simulations
will yield

1 =
∑

E

H1(E; β1) +H2(E; β2)

N1 +N2 exp[−∆β E −∆f ]
(A.18)

where ∆β = β2 − β1 and ∆f = f2 − f1 is the only unknown parameter.10 The solution to
the equation does not require any iteration and can simply be obtained numerically. The
generalization of Equation A.18—originally derived by Bennett [Ben76]—to q neighboring
histograms (i.e., q histograms on the left and q histograms on the right of ∆f) leads
to an efficient iterative solution for the full set of histograms. Rather than taking into
account all histograms at once (as in the iterative scheme), each free energy difference
∆fk = fk+1 − fk will be iteratively refined by including additional neighboring histograms
until full convergence (see Figure A.1 for details). Unlike the original Bennett equation,
the incorporation of more neighbors will require an iteration of the solution in order for all
values ∆fk to be consistent. The generalized Bennett equation for ∆fk with q neighboring
histograms can be written

1 =
∑

E

∑k+1+q
i=k−q Hi(E; βi)

Ωk(E)
(A.19)

10There is only one unknown—rather than two—because free energies are only determined up to an
arbitrary constant.
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and

Ωk(E) = Nk +Nk+1 exp [−∆βk E −∆fnew
k ]

+
k−1∑

m=k−q

exp

[
(βk − βm)E +

k−1∑

j=m

∆f old
j

]

+ exp [−∆fnew
k ]×

k+1+q∑

m=k+2

Nm exp

[
(βk − βm)E −

m−1∑

j=k+1

∆f old
j

]
. (A.20)

∆f old
k represents the previous evaluation of ∆fk whereas ∆fnew

k represents the current one.
The pair of equations A.19 and A.20 contains only a single unknown ∆fnew

i , making it easy
to solve numerically. The last iteration of the algorithm, which includes all neighbors, is
equivalent to the solution of Equation A.9.

The algorithm performs especially well for histograms that have smaller overlaps because
the correlation between neighboring histograms decays quickly. Apart from chapter 4,11 all
free energy calculations in the present thesis were converged using this method, achieving
speedups of up to sixty-fold compared to the iterative scheme.

A.1.5 Umbrella sampling

Umbrella sampling [TV77], as mentioned in subsection A.1.1, offers a way to improve
statistical sampling in regions of low probability by replacing the standard Boltzmann
weight by a more appropriate function w. The estimator for the canonical expectation
value of observable Q evaluated at inverse temperature β, but sampled from a distribution
w, becomes (see Equation A.3)

Q(M)(β) =

∑M
i=1Qµi

w−1
µi
e−βEµi

∑M
j=1w

−1
µj
e−βEµj

, (A.21)

where wµi
is the evaluation of the function w for microstate µi.

To further introduce the Umbrella sampling technique, recall the problem of calculat-
ing the free energy of a system as a function of an order parameter Q (i.e., PMF, see
subsection A.1.3) F (Q) = −β−1 ln p(Q). Let’s assume the PMF to be strongly varying as
a function of Q, such that a standard canonical simulation, with probability distribution
p(Q), fails to sample all values of the order parameter within an interval of interest. The
introduction of a biasing weight function w is equivalent to an additional term V (Q) in the
Hamiltonian of the system H = H0 + V (Q),12 such that the standard Boltzmann weight

11This work, which is based on a microcanonical analysis of helical peptides, required the accurate
evaluation of Ω(E). This was achieved by simulating many replicas close to the transition temperature
and thus lead to strong overlap between histograms. It has proven difficult to converge strongly overlapping
histograms using the method presented in subsection A.1.4 due to stability issues.

12We assume Q to be a function of the system’s coordinates (e.g., particle positions).
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Figure A.1: Iterative refinement of the free energy difference ∆fk for (a) q = 0 which
corresponds to the original Bennett equation (Equation A.18), (b) q = 1, and
(c) q = 2, corresponding to one and two additional histograms on each side,
respectively.
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A.1 Formalism

is replaced by exp(−βE)× exp(−βV ). By properly choosing V , we can enhance sampling
in the regions of low probability. Ideally, setting the potential V (Q) such that it cancels
F (Q) will allow to sample all values Q with equal probability. This is easier said than done
as F (Q) is often the very quantity we wish to determine from this technique. Instead, the
range of the order parameter is often split into small windows, each of which is sampled
by the use of a harmonic restraint Vi(Q) = 1

2
kQ(Q − Qi)

2, where i runs over the number
of windows.

Once the biased distributions pw
i (Q) have been sampled, it is possible to calculate the

corresponding unbiased PMFs Fi(Q) through the following expression

Fi(Q) = −Vi(Q)− kBT ln pw
i (Q) + Ci, (A.22)

where Ci represent constant shifts between windows. Because we are only interested in
free energy differences, the curves may be shifted such that the resulting PMF F (Q) is
continuous. While it is possible to shift the different curves by hand, the results tend
to suffer from artifacts and do not take advantage of the data available in neighboring
umbrellas. Instead, we again rely on results from the multiple histogram method, presented
below.

Since its original introduction, Umbrella sampling has greatly benefitted from the de-
velopment of the multiple histogram method. Kumar et al. showed that recovering the
unbiased distribution p(Q) by means of the multiple histogram method offers (i) the opti-
mal set of free energies so as to minimize statistical errors and (ii) allows multiple overlaps
of probability distributions for obtaining better estimates of F (Q) [KRB+92].

The equations derived from the multiple histogram method to unbias Umbrella sampling
simulations, analogous to Equation A.9, are

efk =
∑

i,s

1∑
j Nj exp[βiVi,s − βjVj,s − fj]

, (A.23)

where Vi,s is the sth-sampled value of the ith-restraining potential V . This equation was
used in chapter 6 to calculate the PMF curves of insertion of single amino acid side chains
into a DOPC bilayer.

A.1.6 Error estimation and bootstrap resampling

The multiple histogram method provides an estimate for the relative error on the density
of states, δΩ/Ω. In the case of unbiased energy histograms (subsection A.1.3) the following
can be shown [FS89]

δΩ(E)

Ω(E)
=

[
R∑

i=1

Hi(E; βi)

]−1/2

, (A.24)
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such that the error is simply related to the amount of sampling. Similarly, the error on
the density of states from Umbrella sampling simulations reads [KRB+92]

δΩ(Q)

Ω(Q)
=

[
R∑

i=1

Hi(Q;Vi)

]−1/2

, (A.25)

where Hi(Q;Vi) corresponds to bin Q of the ith-histogram with restraining potential Vi.
In both cases the error on the density of states scales like 1/

√
N , where N is the number

of data points. Unfortunately, the multiple histogram method offers no expression for the
absolute error on Ω.

Formally, error bars on δΩ can be estimated by running the same simulation a large
number of times, determine Ω for each of them, and then calculate the standard deviation
at small intervals of the associated variable (e.g., E, Q). This is often impractical due to
limited computational resources. One alternative is to estimate the variance by using a
statistical resampling method. Such methods use subsamples of the available data to calcu-
late robust estimates of certain statistical estimators, such as the average and the variance.
Famous examples include (i) the “bootstrap” method which estimates the robustness of
a distribution by sampling with replacement from the original sample [Che08]—more pre-
cisely, the bootstrap method randomly draws N data points from a sample containing N
elements, allowing points to be drawn multiple times, and (ii) the “jackknife” method
where the precision of the data set is probed by systematically recomputing the variance
leaving out one data point. The jackknife was shown to be a linear approximation method
for the bootstrap [Efr79]. Both methods will yield exact estimates for the error of a mea-
sured quantity in the limit of infinite data set [NB99].

The bootstrap method was used to estimate error bars on densities of states (as well
as related quantities such as the entropy S(E) = kB ln(E)) and PMFs calculated in the
present thesis.

A.2 Implementation of the multiple histogram method

This section describes several implementation aspects of the multiple histogram method
and focuses specifically on the convergence of the unknown free energies fk (Equation A.9).
The calculation requires much care due to the exponential functions which appear in the de-
nominator. Because computers can only represent numbers within a certain range, overflow
errors easily arise when implementing the multiple histogram method.13 Two complemen-
tary approaches have shown useful when implementing the algorithm:

• A constant shift applied to all the free energies will neither affect the final answer
nor the rate of the convergence of the whole set. Shifting all fk such that

∑
k fk = 0

can avoid drifts towards unreasonably low or high values.

13These implementation issues can be avoided by using recently developed, arbitrary precision arith-
metic libraries. See, e.g., http://gmplib.org.
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• The program will result in an overflow error whenever the exponent (βk − βj)Ei,s −
fj becomes large.14 A simple technique easily solves the problem:15 for any fixed
values of k, i and s, scan the variable j in order to obtain the largest contribution
(βk − βj)Ei,s − fj, and keep track of this index ζ := j. Now recast Equation A.9 in
the following way

efk =
∑

i,s

1∑
j Nj exp [(βk − βj)Ei,s − fj]

exp [−(βk − βζ)Ei,s + fζ ]

exp [−(βk − βζ)Ei,s + fζ ]
(A.26)

=
∑

i,s

exp [−(βk − βζ)Ei,s + fζ ]∑
j Nj exp [{(βk − βj)Ei,s − fj]} − {(βk − βζ)Ei,s − fζ}]

(A.27)

This makes sure the exponential factor in the denominator will be less than 1. The
exponential in the numerator should be small since it corresponds to the inverse of
the largest exponential factor (by definition of ζ). While this method is likely to
create underflows due to contributions from small exponentials, it should not affect
the final result. This technique was also applied on Equation A.23 to unbias umbrella
simulations.

A.2.1 Iterative convergence of the free energies

Algorithm A.1 shows a C implementation of the iterative convergence of the free energies
as described in Equation A.27. The f new array (underlined throughout the code) contains
the updated values of the quantities fk. argarray stores the values of (βk − βj)Ei,s − fj

for all j and arg represents the largest contribution (i.e., j = ζ). deltaF calculates the
summed absolute difference between all fk values of step n − 1 and step n. It is used on
line 1 as a termination criterion of the while loop.

In order to speed up the calculation, the routine was parallelized using the OpenMP

application programming interface.16 The following piece of code was inserted between line
1 and 2 of Algorithm A.1.

1 #pragma omp parallel for private(j,i_HE ,sumNum ,sumDen ,←֓
2 arg ,k,argarray)

The arrow symbol “←֓” means that the line continues (i.e., no line break). Parallelization
in this case is trivial because the calculation of ∆fk is independent of ∆fk′ at a given
iteration step.

14How large may depend on the programming language, compiler, and computer architecture. Also,
note that the implementation avoids the use of histograms, and the equations sum over states rather than
energy (see Equation A.14).

15R. H. Swendsen, personal communication.
16OpenMP (www.openmp.org) provides a remarkably simple interface to perform shared-memory par-

allel programming. The compiler flag required to activate it is -fopenmp in gcc and -openmp in icc.
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Algorithm A.1: Convergence of the free energies by the iterative method

1 while (deltaF >TOL_ITER) {

2 for (k = 0; k<N_SIMS; ++k){

3 f_new[k] = 0.;

4 for (i = 0; i<N_SIMS; ++i){

5 for (s = 0; s<HIST_SIZES[i]; ++s){

6 denominator = 0.;

7 arg = -1e300;

8 argarray = calloc (N_SIMS , sizeof *argarray );

9 /* Overflow trick: determine largest contribution */

10 for (j = 0; j<N_SIMS; ++j){

11 argarray[j] = (BETAS[k] - BETAS[j])

12 * HIST[i][s] - f_current[j];

13 if (argarray[j]>arg)

14 arg=argarray[j];

15 }

16 /* Calculation of f_new */

17 for (j = 0; j<N_SIMS; ++j)

18 denominator += HIST_SIZES[j]

19 * exp(argarray[j]-arg);

20 numerator = exp(-arg);

21 f_new[k] += numerator/denominator;

22 }

23 }

24 f_new[k] = log(f_new[k]);

25 f_previous[k] = f_current[k];

26 f_current[k] = f_new[k];

27 }

28 deltaF = 0.;

29 for (k = 0; k<N_SIMS; ++k )

30 deltaF += fabs(f_new[k]-f_previous[k]);

31 }
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A.2.2 Optimized convergence of the free energies

While extremely efficient, the implementation of the generalized Bennett equation (Equa-
tions A.19 and A.20) involves a number of technical caveats—many of which are described
in [BS09]. Here we present a C implementation of the algorithm. The main routine that
calculates the generalized Bennett equations is shown on Algorithm A.2. The outer-most
for loop (line 1) iterates over the number of neighbors q incorporated in the evaluation
of ∆fk. Previous and current evaluations of the kth-free energy difference are stored in
f new[k] and f current[k], respectively. The next evaluation of ∆fk is provided by the
function halfinterval(). Iterative refinements of the free energy differences are weighted
by an update factor UPDATE COEFF to avoid instabilities.

The evaluation of ∆fk is presented in Algorithm A.3. It numerically finds the solution
to Equations A.19 and A.20, as calculated from the function fermi()17 using the false-
position method (see Technical Point A.1). Compared to other numerical root finding
schemes, the false position method

• does not require the evaluation of derivatives (unlike, e.g., Newton-Raphson), and

• will always converge (unlike, e.g., the secant method).

The two initial conditions required to use the algorithm are determined by coming back
to the original Bennett equation (Equation A.18). Note that there is a fundamental asym-
metry in the equation when exchanging indices 1 and 2 (or, more generally, k and k + 1):

1 =
∑

E

Hk(E) +Hk+1(E)

Nk +Nk+1 exp[−∆βk E −∆fk]
, (A.28)

1 =
∑

E

Hk(E) +Hk+1(E)

Nk exp[∆βk E + ∆fk] +Nk+1

. (A.29)

The two initial conditions for the false position method were set to simplified (and therefore
approximate) analytical solutions of these equations, such that

∆fa
k ≈ − ln

∑

E

Hk+1(E)

Nk+1 exp(−∆βk E)
, (A.30)

∆f b
k ≈ ln

∑

E

Hk(E)

Nk exp(−∆βk E)
. (A.31)

This is precisely what the function init fermi() calculates,18 as shown in Algorithm A.4.
Note that while we do not prove here that ∆fa

k and ∆f b
k bracket the true solution (as

required by the false position method), the method has, so far, never failed.

17The name is due to the functional similarity between Equation A.19 and the famous Fermi function
in solid-state physics.

18Again, the function implements a variant that does not refer explicitly to energies but states in order
to avoid histogram binning artifacts.
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Technical Point A.1 The false position method

The false position method [BF05] is a root-
finding algorithm that iteratively converges
towards the solution f(x∗) = 0 from two ini-
tial values x = a1 and x = b1 such that
f(a1)f(b1) < 1, and provided there is only
one root in the interval [a1; b1].

Iteration n of the algorithm first deter-
mines a new value dn within the interval
[an; bn]

dn =
f(bn)an − f(an)bn
f(bn)− f(an)

, (A.32)

where the line between (an, f(an)) and
(bn, f(bn)) goes through y = 0 at x = dn.
This point is used alongside either an+1 or
bn+1 in the next iteration such that the two
points are on opposite sides of the y = 0 line.

f(x)

xa1, a2

b1b20

x∗

Last, the fermi() function, shown in Algorithm A.5, implements the calculation of ∆fk.
The variable den, which calculates Ωk(E) in Equation A.20, was underlined throughout
the function. The function subtracts the result by 1 because the false position method
looks for the solution of the equation f(x∗) = 0. An overall vertical shift of the function
does not affect the result whatsoever.

Finally, the overall speedup of the algorithm can be greatly enhanced by performing
parallel computation. This is simply done by adding the following piece of code between
lines 6 and 7 of Algorithm A.2

1 #pragma omp parallel for reduction (+: converg_rate)

As before, the parallelization is trivial because the calculation of ∆fk is independent of
∆fk′ at a given iteration step.
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Algorithm A.2: Convergence of the free energies by the optimized method

1 for (q=0;q<N_SIMS -1;++q) {

2 /* q: neighbor level */

3 converg_rate = 1.;

4 iter_q = 0;

5 while (converg_rate >TOL_ITER ){

6 converg_rate =0.;

7 for (k=0;k<N_SIMS -1;++k){

8 if (iter ==0 && q==0)

9 /* Very first iteration */

10 f_new[k] = halfinterval(q,k);

11 else {

12 f_current[k] = f_new[k];

13 /* update factor to avoid unstability */

14 f_new[k] = UPDATE_COEFF * halfinterval(q,k)

15 + (1- UPDATE_COEFF) * f_current[k];

16 }

17 converg_rate += fabs(f_new[k]-f_current[k]);

18 }

19

20 /* Test early exit condition

21 * (more neighbors do not contribute)

22 */

23 if (q > 0 && converg_rate < TOL_ITER && iter_q == 0)

24 q = N_SIMS;

25 ++iter;

26 ++ iter_q;

27 }

28 }
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Algorithm A.3: Function halfinterval() used in the optimized method

1 double halfinterval(int q, int k)

2 {

3 double a, b, fa, fb, d, fd;

4

5 /* initial conditions */

6 a=init_fermi(k, 1);

7 b=init_fermi(k, 0);

8

9 /* False position method */

10 do{

11 fa=fermi(q, k, a);

12 fb=fermi(q, k, b);

13 d=(fb*a-fa*b)/(fb-fa);

14 fd=fermi(q, k, d);

15 if (fa*fd >0) a=d;

16 else b=d;

17 } while (fabs(fd) > TOL_FERMI );

18 return d;

19 }
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Algorithm A.4: Function init fermi() used in the optimized method

1 double init_fermi(int k, int left)

2 {

3 int s, j; double func , den , arg;

4

5 if (left) j = k+1;

6 else j = k;

7 func =0.;

8

9 for (s=0;s<HIST_SIZES[j];++s){

10 arg=(BETAS[k]-BETAS[k+1])* HIST[j][s];

11 den=NORM_HIST[j];

12 if (left) den*=exp(arg);

13 else den*=exp(-arg);

14 func +=1./ den;

15 }

16 if (left) return -log(func);

17 else return log(func);

18 }
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Algorithm A.5: Function fermi() used in the optimized method

1 double fermi(int q, int k, double x)

2 {

3 double func , dbeta , den , dbm , deltafj;

4 int i, s, m, k;

5

6 func =0.;

7 for (i=k-q; i<=k+1+q; ++i){

8 if (i>=0 && i<N_SIMS ){

9 for (s=0; s<HIST_SIZES[i]; ++s)

10 dbeta = (BETAS[k]-BETAS[k+1]) * HIST[i][s];

11 den = NORM_HIST[k] + NORM_HIST[k+1] * exp(dbeta -x);

12 if (q>0){

13 for (m=k-q; m<=k-1; ++m){

14 if (m>=0){

15 dbm = (BETAS[k]-BETAS[m]) * HIST[i][s];

16 deltafj = 0.;

17 for (j=m; j<=k-1; ++j)

18 deltafj += FENERGIES[j];

19 den += NORM_HIST[m] * exp(dbm+deltafj );

20 }

21 }

22 for (m=k+2; m<=k+1+q; ++m){

23 if (m<N_SIMS ){

24 dbm = (BETAS[k]-BETAS[m])* HIST[i][s];

25 deltafj = 0.;

26 for (j=k+1; j<=m-1; ++j)

27 deltafj += FENERGIES[j];

28 den += NORM_HIST[m] * exp(dbm -deltafj -x);

29 }

30 }

31 }

32 func += 1./den;

33 }

34 }

35 func -= 1.;

36 return func;

37 }
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