This represents a two-dimensional embedding of all the group’s publications, clustered in topics. Publication abstracts are lemmatized and clustered using BERTopic with a UMAP dimensionality reduction.
For a more detailed description of our research, see Topics.
Source Code
---title: "Research landscape"format: html: toc: false echo: false keep-hidden: true code-tools: true---```{ojs}//| panel: inputviewof visible_topics = Inputs.checkbox( topic_names, { value: topic_names, label: "Topics:" })```::: {.panel-tabset}## Plot```{ojs}Plot.plot({ grid: true, color: { scheme: "spectral", domain: topic_names, legend: true }, x: { label: "" }, y: { label: "" }, marks: [ Plot.dot( filtered, { x: "embedding.x", y: "embedding.y", title: (d) => `${d.doi}\n ${d.title}\n ${d['journal.abbreviation']} ${d['journal.volume']} (${d['year']})`, fill: "embedding.topic_name", r: 6, } ) ], tooltip: { stroke: "blue", }})```## Data```{ojs}Inputs.table(filtered, { columns: [ "doi", "title", "journal.name", "journal.volume", "year", ], header: { "journal.name": "journal", "journal.volume": "volume", }, format: { doi: doi => htl.html`<a href=https://doi.org/${doi} target=_blank>${doi}</a>`, title: title => htl.html`${title}`, "journal.volume": volume => htl.html`<b>${volume}</b>`, year: year => htl.html`${year}`, }, width: { "title": 10 }, layout: "fixed",})```:::```{ojs}import {Plot} from "@mkfreeman/plot-tooltip"papers = FileAttachment("data/all_papers.csv").csv({ typed: true })topic_names = Array.from(new Set(papers.map(d => d["embedding.topic_name"])))filtered = papers.filter(function(p) { return visible_topics.includes(p["embedding.topic_name"]);})```:::{.callout-note}This represents a two-dimensional embedding of all the group's publications, clustered in topics. Publication abstracts are lemmatized and clustered using [BERTopic](https://github.com/MaartenGr/BERTopic) with a UMAP dimensionality reduction.For a more detailed description of our research, see [Topics](/research_topics.html).:::